• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sorption Study of Se(-II) onto Illite, Bentonite, and Shale Under High Ionic Strength Conditions

Walker, Andrew January 2018 (has links)
Due to the very long half-life of Se-79 and its presence in used nuclear fuel, Se is an element of interest in the safety assessment for a deep geological repository (DGR) for used nuclear fuel. Sorption of radionuclides onto the surrounding host rocks and engineered barrier materials is a potential retardation mechanism for radionuclide transport. This thesis investigates the sorption of Se(-II) onto illite, bentonite (engineered barrier material), and shale under high ionic strength conditions relevant to a Canadian DGR. The ionic strength and pH dependence of Se(-II) sorption onto illite, bentonite, and shale were studied. A non-electrostatic surface complexation model was also developed for Se(-II) sorption onto illite and montmorillonite to investigate the sorption mechanisms by which Se(-II) sorbs onto these solids. / Thesis / Master of Applied Science (MASc)
2

Study of sorption properties of Eu on MX-80 bentonite under highly saline, reducing conditions, and under saline, reducing conditions

Yang, Jieci January 2021 (has links)
Pu (III) is one of the key elements in the safety assessments of Canadian deep geological repository program (DGR). Sorption is a potential mechanism for retarding radionuclide transport from a DGR to the environment. In the current scenario, Pu (III) is considered to be a dominant radioactive element in the deep geological groundwater. Eu, considered to be a chemical analogue of Pu (III), its sorption behavior is now the target of our research. This thesis investigates the sorption properties of Eu on MX-80 under saline reducing conditions, and highly saline reducing conditions. The thermodynamic sorption modelling of Eu is also need to be applied. A surface sorption model is also developed by applying computer program for Eu (III) on MX-80 to investigate the sorption mechanisms of Eu (III) sorption. / Thesis / Master of Applied Science (MASc)

Page generated in 0.1131 seconds