• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • Tagged with
  • 8
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Berechnung der Kottwitz-Shelstad-Transferfaktoren für unverzweigte Tori in nicht zusammenhängenden reduktiven Gruppen /

Ballmann, Joachim. January 2001 (has links)
Mannheim, Universiẗat, Diss., 2001.
2

Fourier transforms of invariant functions on finite reductive Lie algebras /

Letellier, Emmanuel. January 2005 (has links)
Diss.--Paris, 2003. / Literaturverz. S. [159] - 162.
3

Kombinatorische Elektrosynthese in ionischen Flüssigkeiten

Schwarz, Markus. January 2005 (has links)
Tübingen, Univ., Diplomarb., 2005.
4

Instabile rationale Konjugationsklassen in reduktiven Gruppen

Horn, Tobias. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2005--Heidelberg.
5

Berechnung der Kottwitz-Shelstad-Transferfaktoren für unverzweigte Tori in nicht zusammenhängenden reduktiven Gruppen

Ballmann, Joachim. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2001--Mannheim.
6

Technetium environmental chemistry: Mechanisms for the surface-mediated reduction of Tc(VII)

Rodríguez Hernandez, Diana Marcela 08 July 2021 (has links)
Technetium is the lightest element whose isotopes are all radioactive. Among them, 99Tc (hereafter simply referred as technetium or Tc) is the most abundant and raises great environmental concern due to its relatively long half-life of 2.14×105 years and the high mobility of pertechnetate, Tc(VII)O4, its most stable form under aerobic conditions. The reduction from Tc(VII) to Tc(IV) is one of the most successful strategies for Tc immobilization; however, the mechanism of this redox reaction is not yet fully understood. This presents a large gap in the general knowledge of technetium chemistry and a significant obstacle for the modeling of its reactivity in contexts like a nuclear waste repository. This thesis was developed in the frame of the BMWi funded VESPA II project, and it studies the surface-mediated reduction of 99Tc(VII) using a combination of fundamental chemistry and its application for remediation and nuclear waste management. First, spectro-electrochemical methods (cyclic voltammetry, rotating disk electrode, chronoamperometry coupled with UV-vis, Raman microscopy and nuclear magnetic resonance) were employed to study the reduction mechanism of 0.5 mM KTcO4 in non-complexing media (2 M NaClO4) in the pH range from 2.0 to 10.0. It was found that the mechanism depends on the pH. At pH 2.0 it splits into two steps: Tc(VII) gains 2.1 ± 0.3 electrons and becomes Tc(V) that rapidly reduces to Tc(IV) with the transfer of further 1.3 ± 0.3 electrons. In contrast, at pH ≥ 4.0 there is a direct transfer of 3.2 ± 0.3 electrons. The complete reduction of Tc(VII) yielded a black solid that was successfully characterized by NMR and Raman microscopy as Tc(IV) regardless of the initial pH at which the reaction occurred. Unfortunately, it was not possible to observe the Tc(V) species at pH 2.0 by the spectroscopic tools used. Second, the reductive immobilization of Tc(VII) by pure pyrite and a synthetic mixture marcasite-pyrite 60:40 (synthetic FeS2, with both minerals being polymorphs) was studied by a combination of batch sorption experiments (Tc-removal was studied varying pH, contact time, ionic strength and Tc concentration) and several spectroscopies and microscopies such as Raman microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy and VIII X-ray absorption spectroscopy. It was found that both pyrite and the synthetic FeS2 promote the reduction of Tc(VII) to Tc(IV). In the case of pure pyrite, the Tc-removal is complete after one day in contact at pH ≥ 5.5. The spectroscopic analysis showed at pH 6.0 an inner-sphere complex between Tc(IV) dimers and hematite formed as secondary mineral on the pyrite surface. In contrast, at pH 10.0 Tc(IV) gets incorporated into surficial magnetite by replacing Fe3+ in octahedral position, with Fe2+ providing reasonable charge compensation for Tc4+. The presence of marcasite made the process slower and less efficient since the synthetic FeS2 was capable to remove 100% Tc from solution only after seven days in contact at 6.0 < pH ≤ 9.0 while the Tc-removal at pH 10.0 was only around 80%. At pH 6.0 the formation of hematite was also observed, suggesting that the formed Tc(IV) species at the surface is the same as with pure pyrite. However, at pH 10.0 the formation of sulfate minerals evidences a change of redox active species: S2- instead of Fe2+. This, combined with the fact that in both solids the formation of TcSx species was detected by XPS at pH 10.0, shows the potential of sulfur as another reducing agent for Tc(VII). The effect of polymorphism on the Tc removal is remarkable and this work shows the relevance of more studies on the interaction of radionuclei with other mineral polymorphs. Regardless of the kinetics of the Tc removal, both pyrite and synthetic FeS2 hindered the re-oxidation of Tc(IV) when exposed to ambient atmosphere for two months. This feature makes them good candidates for the remediation of technetium from contaminated waters. Moreover, natural attenuation effects can be expected for technetium in the near and far field of nuclear waste repositories wherever iron sulfide is present. The results presented in this work contribute to a better understanding of the fundamental aqueous chemistry of technetium and confirm pyrite, a ubiquitous mineral, as a very good candidate for technetium scavenging even in the presence of marcasite. These results close important gaps in thermodynamic databases that are needed for the safety assessment, i.e. modeling of fission products.
7

Mikrobielle Diversität und Dynamik einer 1,2-Dichlorpropan dechlorierenden Mischkultur

Schlötelburg, Cord 14 January 2002 (has links)
Die toxische sowie kanzerogene Verbindung 1,2-Dichlorpropan (DCP) ist weit verbreitet in Industrie und Landwirtschaft. Die Verbindung zeigt eine geringe chemische Reaktivität, ist nur mäßig wasserlöslich und unter aeroben Bedingungen weitestgehend beständig gegenüber mikrobiellen Abbauprozessen in der Umwelt. Als Folge reichert sich DCP in Grundwässern, Sedimenten und Böden an und gefährdet über die Nahrungskette die Gesundheit von Mensch und Tier. Um DCP effizient und ökonomisch zu unbedenklichen Verbindungen abzubauen, wurden mikrobielle Mischkulturen aus belasteten Sedimenten angereichert und in einen Wirbelschichtreaktor überführt. Dieses Verfahren ermöglichte eine kontinuierliche anaerobe Dechlorierung von DCP zu Propen. Grundsätzlich stellen biologische Abbauverfahren, bei denen komplexe mikrobielle Mischpopulationen eingesetzt werden, einen vielversprechenden Weg zur Transformation chlororganischer Verbindungen dar. Jedoch liegen üblicherweise nur wenige Informationen über die Zusammensetzung der betreffenden Populationen vor, so daß eine Optimierung bzw. effiziente Steuerung des Prozesses erheblich erschwert wird. Gegenstand der vorliegenden Arbeit war die Bestimmung der mikrobiellen Zusammensetzung der DCP-dechlorierenden Bioreaktorpopulation. Aufgrund der bekannten Limitierungen klassisch-mikrobiologischer Nachweisverfahren wurde eine Kombination mehrerer molekulargenetischer Methoden eingesetzt, die auf der vergleichenden Sequenzanalyse ribosomaler RNA beruhten. Die Untersuchungen zeigten, daß die Bakterienpopulation des Reaktors außerordentlich divers zusammengesetzt war und im wesentlichen aus bislang nicht-kultivierten Arten bestand. Es dominierten "Grüne nicht-schwefelhaltige Bakterien" (green nonsulfur bacteria) sowie Grampositive Bakterien mit niedrigem GC-Gehalt. Die Archaea hingegen waren fast ausschließlich durch zwei bekannte methanogene Spezies vertreten, Methanosaeta concilii sowie Methanomethylovorans hollandica. Der Vergleich der gewonnenen rDNA-Daten mit denen anderer Lebensräume ergab, daß Süßwasserhabitate, in denen chlororganische Verbindungen reduktiv umgesetzt werden, offenbar eine spezifische Populationsstruktur aufweisen. Es konnten spezifische 16S rDNA-Gruppen definiert werden (SHA-Cluster), die auch nach längerem Reaktorbetrieb noch nachgewiesen werden konnten. Darüber hinaus wurden Dehalobacter restrictus- sowie Dehalococcoides ethenogenes-ähnliche Bakterien in der DCP-dechlorierenden Bioreaktorpopulation gefunden. Beide Spezies sind in der Lage, chlororganische Verbindungen unter Verwendung von Wasserstoff als alleinigem Elektronendonor reduktiv zu dechlorieren. Es ist davon auszugehen, daß Dehalobacter und Dehalococcoides spp. aufgrund ihrer Physiologie an der reduktiven Umsetzung des DCPs beteiligt sind. Die Untersuchung der Population über einen längeren Zeitraum zeigte überdies, daß Bakterien der Gattung Dehalobacter überproportional angereichert und daraufhin zur dominierenden Spezies im Reaktor wurden. Dieser Befund läßt auf eine zentrale Rolle von Dehalobacter spp. bei der Transformation von DCP zu Propen schließen. Konsequenterweise führte die Zugabe von Wasserstoff zum Reaktor zur einer deutlichen Steigerung des DCP-Umsatzes. Dehalobacter und Dehalococcoides spp. sowie die anderen durch SHA-Cluster repräsentierten Bakterien stellen potentielle Indikatororganismen für die DCP-Transformation im Reaktor dar. Ein kontinuierliches Monitoring dieser Bakterien würde zu einer effizienteren Steuerung des Dechlorierungsprozesses und damit zu einer Optimierung des Verfahrens führen. / The toxic and carcinogenic compound 1,2-dichloropropane (DCP) is widely used in industry and agriculture. DCP shows a low chemical reactivity. It is only moderately soluble in aqueous systems and almost recalcitrant to microbial degradation under aerobic conditions. As a consequence DCP accumulates in groundwater, sediments and soil, thus endangering humans and animals via the food chain. To efficiently transform DCP to harmless organic compounds microbial mixed cultures have been enriched from sediments and were subsequently transferred into a fluidized bed bioreactor. This process allowed a continuous anaerobic dechlorination of DCP to propene. Bioreactor processes using complex microbiota represent a promising technology for transformation of chlorinated compounds. However, the composition of the used population is usually unknown, hence hindering both optimization and control of the degradation process. Subject of this work was the analysis of the microbial diversity of the DCP-dechlorinating bioreactor population. Conventional culture-dependent microbiological methods are often limited if used for the analysis of complex communities. Therefore, a combination of different molecular methods based on comparative 16S rRNA analysis was applied. It was found that the bioreactor population was highly diverse and consisted mainly of as yet-uncultured bacteria. Members of the green nonsulfur bacteria and the gram-positive bacteria with low G+C content dominated the consortium. In contrast the archaea were represented by only two species, Methanosaeta concilii and Methanomethylovorans hollandica. The comparison of the rDNA data with those of other biotopes revealed that reductively dechlorinating freshwater habitats show a specific community structure. 16S rDNA-clusters were defined, which could still be detected after a longer operation time of the bioreactor. Furthermore, Dehalobacter restrictus- and Dehalococcoides ethenogenes-like bacteria were found in the DCP-dechlorinating bioreactor population. Both species are capable of reductive dechlorination using hydrogen as the sole electron source. Therefore, it could be assumed that these bacteria were also involved in the dechlorination of DCP. The investigation of the bioreactor population for a longer period of time revealed that Dehalobacter-like bacteria were significantly enriched and subsequently became the most frequently found bacterium within the bioreactor. This indicates a major role of Dehalobacter spp. within the transformation process of DCP to propene. Consequently, the addition of hydrogen to the bioreactor led to an increase of the DCP transformation rate. Dehalobacter und Dehalococcoides spp. as well as the bacteria represented by the specific SHA-clusters are possibly suitable as indicator organisms for the transformation of DCP within the bioreactor. A continuous monitoring of these bacteria would lead to a more efficient control and hence, to an optimization of the transformation process.
8

Insights into the ATP-dependent reductive activation of the Corrinoid/Iron-Sulfur Protein of Carboxydothermus hydrogenoformans

Hennig, Sandra Elisabeth 19 June 2014 (has links)
Die Verknüpfung einer exergonischen mit einer endergonischen Reaktion zur Ermöglichung der letzteren ist eine in biologischen Systemen weit verbreitete Strategie. Energetisch benachteiligte Elektronenübertragungsreaktionen im Rahmen der reduktiven Aktivierung von Nitrogenasen, Radikal-abhängigen β,α-Dehydratasen, der zu diesen verwandten Benzoyl-CoA-Reduktasen und diversen Cobalamin-abhängigen Methyltransferasen sind gekoppelt an die Hydrolyse von ATP. Der Methylgruppentransfer des reduktiven Acetyl-CoA-Weges von Carboxydothermus hydrogenoformans erfordert den Co(I)-Zustand des Corrinoid/Eisen-Schwefel Proteins (CoFeSP). Um diese superreduzierte Form nach einer oxidativen Inaktivierung zu regenerieren ist ein „Reparaturmechanismus“ erforderlich. Ein offenes Leseraster (orf7), welches möglicherweise für eine reduktive Aktivase von Corrinoid Enzymen (RACE) kodiert, wurde in dem Gencluster der am reduktiven Acetyl-CoA-Weg beteiligten Proteine entdeckt. Im Rahmen dieser Arbeit wurde dieses potenzielle RACE Protein biochemisch und strukturell charakterisiert und die ATP-abhängige reduktive Aktivierung von CoFeSP untersucht. Auf Grundlage der in dieser Arbeit gewonnenen Ergebnisse wurde ein Mechanismus für die ATP-abhängige Aktivierung entworfen. Dieser gibt Einblicke wie die durch ATP-Hydrolyse bereitgestellte Energie einen energetisch ungünstigen Elektronentransfer ermöglichen kann. Hierzu kombiniert RACo das Ausgleichen von Bindungsenergien mit Modulationen am Elektronenakzeptor. Eine vergleichbare Strategie wurde bisher in keinem anderen ATP-abhängigen Elektronenübertragungssystem wie dem von Nitrogenasen, Radikal-abhängigen β,α-Dehydratasen oder Benzoyl-CoA-Reduktasen beobachtet und könnte ein für RACE Proteine allgemein gültige Eigenschaft darstellen. / The principle of coupling an exergonic to an endergonic reaction to enable the latter is a widespread strategy in biological systems. Unfavoured electron transfer reactions in the reductive activation of nitrogenases, radical-dependent β,α-dehydratases and the related benzoyl- CoA reductases, as well as different cobalamin-dependent methyltransferases are coupled to the hydrolysis of ATP. The reductive acetyl-CoA pathway of Carboxydothermus hydrogenoformans relies on the superreduced Co(I)-state of the corrinoid/iron-sulfur protein (CoFeSP) that requires a “repair mechanism” in case of incidental oxidation. An open reading frame (orf7) coding for a putative reductive activase of corrinoid enzymes (RACE) was discovered in the gene cluster of proteins involved in the reductive acetyl-CoA pathway. In this work, this putative RACE protein was biochemically and structurally characterised and the ATP-dependent reductive activation of CoFeSP was investigated. Based on the results of this study, a mechanism for the ATP-dependent reactivation of CoFeSP was deduced providing insights into how the energy provided by ATP could trigger this unfavourable electron transfer. The reductive activator of CoFeSP combines balance of binding energies and modulations of the electron acceptor to promote the uphill electron transfer to CoFeSP. A comparable strategy has not been observed in other ATP-dependent electron transfer systems like nitrogenases, radical-dependent β,α-dehydratases and benzoyl- CoA reductases and could be a universal feature of RACE proteins.

Page generated in 0.0538 seconds