1 |
Recovering Intrinsic Images from a Single ImageTappen, Marshall F., Freeman, William T., Adelson, Edward H. 01 September 2002 (has links)
We present an algorithm that uses multiple cues to recover shading and reflectance intrinsic images from a single image. Using both color information and a classifier trained to recognize gray-scale patterns, each image derivative is classified as being caused by shading or a change in the surface's reflectance. Generalized Belief Propagation is then used to propagate information from areas where the correct classification is clear to areas where it is ambiguous. We also show results on real images.
|
2 |
Analyse d'images couleurs pour le contrôle qualité non destructif / Color images analysis for non-destructive quality controlHarouna Seybou, Aboubacar 23 September 2016 (has links)
La couleur est un critère important dans de nombreux secteurs d'activité pour identifier, comparer ou encore contrôler la qualité de produits. Cette tâche est souvent assumée par un opérateur humain qui effectue un contrôle visuel. Malheureusement la subjectivité de celui-ci rend ces contrôles peu fiables ou répétables. Pour contourner ces limitations, l'utilisation d'une caméra RGB permet d'acquérir et d'extraire des propriétés photométriques. Cette solution est facile à mettre en place et offre une rapidité de contrôle. Cependant, elle est sensible au phénomène de métamérisme. La mesure de réflectance spectrale est alors la solution la plus appropriée pour s'assurer de la conformité colorimétrique entre des échantillons et une référence. Ainsi dans l'imprimerie, des spectrophotomètres sont utilisés pour mesurer des patchs uniformes imprimés sur une bande latérale. Pour contrôler l'ensemble d'une surface imprimée, des caméras multi-spectrales sont utilisées pour estimer la réflectance de chaque pixel. Cependant, elles sont couteuses comparées aux caméras conventionnelles. Dans ces travaux de recherche, nous étudions l'utilisation d'une caméra RGB pour l'estimation de la réflectance dans le cadre de l'imprimerie. Nous proposons une description spectrale complète de la chaîne de reproduction pour réduire le nombre de mesures dans les phases d'apprentissage et pour compenser les limitations de l'acquisition. Notre première contribution concerne la prise en compte des limitations colorimétriques lors de la caractérisation spectrale d'une caméra. La deuxième contribution est l'exploitation du modèle spectrale de l'imprimante dans les méthodes d'estimation de réflectance. / Color is a major criterion for many sectors to identify, to compare or simply to control the quality of products. This task is generally assumed by a human operator who performs a visual inspection. Unfortunately, this method is unreliable and not repeatable due to the subjectivity of the operator. To avoid these limitations, a RGB camera can be used to capture and extract the photometric properties. This method is simple to deploy and permits a high speed control. However, it's very sensitive to the metamerism effects. Therefore, the reflectance measurement is the more reliable solution to ensure the conformity between samples and a reference. Thus in printing industry, spectrophotometers are used to measure uniform color patches printed on a lateral band. For a control of the entire printed surface, multispectral cameras are used to estimate the reflectance of each pixel. However, they are very expensive compared to conventional cameras. In this thesis, we study the use of an RGB camera for the spectral reflectance estimation in the context of printing. We propose a complete spectral description of the reproduction chain to reduce the number of measurements in the training stages and to compensate for the acquisition limitations. Our first main contribution concerns the consideration of the colorimetric limitations in the spectral characterization of a camera. The second main contribution is the exploitation of the spectral printer model in the reflectance estimation methods.
|
Page generated in 0.1109 seconds