• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1156
  • 787
  • 150
  • 119
  • 96
  • 63
  • 30
  • 27
  • 23
  • 23
  • 23
  • 23
  • 23
  • 22
  • 21
  • Tagged with
  • 2945
  • 711
  • 505
  • 317
  • 278
  • 273
  • 251
  • 242
  • 240
  • 231
  • 221
  • 189
  • 183
  • 174
  • 167
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
501

Role of estrogen receptor β in normal and aged bone healing. / Role of estrogen receptor beta in normal and aged bone healing / CUHK electronic theses & dissertations collection

January 2012 (has links)
骨科醫生面臨著老年婦女的骨修復受損或者癒合延遲的挑戰,這使得康復過程變長,甚至引發高死亡率。至今為止,臨床上仍然沒有促進老年骨癒合的滿意治療方法,因此亟需其他治療策略。骨癒合重現了胚胎後的骨骼發育過程。直接由骨外膜成骨(膜內骨化)以及通過軟骨介質成骨(軟骨內骨化)是骨癒合中的兩個重要過程。 雌激素受體β(ERβ基因敲除雌性小鼠的研究表明ERβ信號通路在骨骼發育過程中同時參與了抑制膜內骨化和軟骨內骨化這兩個過程。臨床活檢的資料顯示,在絶經後婦女的骨痂中,ERβ陽性的增生軟骨細胞數量增加。然而,ERβ在正常和老年骨癒合的作用還沒有研究。 / 本研究通過下述部分檢查了ERβ在正常和老年骨癒合的作用,以及其將來的藥物應用:1) 建立一個以膜內骨化為主的骨癒合模型。2) 通過連個骨癒合模型,檢查ERβ在正常骨癒合中的作用。3) 檢查ERβ在老年骨癒合中的作用並檢查ERβ拮抗劑PHTPP 對老年骨癒合的潛在藥物療效。 / 實驗1是建立一個以膜內骨化為主的骨癒合模型。以前建立的小鼠股骨中段骨折模型是軟骨內骨化為主的骨癒合模型。由於技術難度,該模型可重複性不高,而且其金屬內固定器會造成金屬偽影,進而不能應用高解析度微焦點CT跟蹤觀察的技術。為了檢查ERβ在膜內骨化中的作用,並且應用微焦點CT跟蹤觀察技術,我們首先建立了一個小鼠鑽孔缺損模型。該實驗同時也確認了去勢誘導的骨質疏鬆小鼠相比正常小鼠,在鑽孔缺損模型中骨癒合受阻。 / 實驗2檢驗了阻斷ERβ能促進正常骨癒合的假設。本實驗應用ERβ基因敲除小鼠,在兩個模型中檢驗了實驗假設。第一個是傳統的小鼠股骨中段骨折模型,第二個是由實驗1建立的鑽孔缺損模型。兩個模型都證實ERβ基因敲除小鼠骨癒合和野生型小鼠相比,早期的血管新生和中期的礦化有所增強,末期的骨癒合沒有明顯差異。 / 實驗3 進一步研究ERβ在老年骨癒合中的作用。實驗應用老年小鼠股骨中段骨折模型,比較ERβ基因敲除小鼠和野生型小鼠之間的癒合過程。結果顯示ERβ基因敲除小鼠骨癒合和野生型小鼠相比,早期的血管新生,中期的礦化以及末期的力學性能都有所增強。該結果預示阻斷ERβ能作為另一種治療老年骨折癒合的治療策略。同時,我們也檢測了ERβ的拮抗劑PHTPP(4 - [2 - 苯基- 5,7 -二(三氟甲基)吡唑並[1,5 - A]嘧啶3 - 基]苯酚, 在老年骨癒合中的治療效果。 通過比較用藥組小鼠與安慰劑組小鼠的骨癒合品質,顯示PHTPP治療小鼠血管新生,骨痂礦化和最終的力學性質均優於對照安慰劑組小鼠。 / 綜上所述,本研究描述了ERβ在正常和老年骨癒合中的作用。骨癒合的關鍵過程包括血管新生,膜內骨化以及軟骨內骨化在阻斷ERβ後都得到增強,從而加快正常骨和老年骨的骨痂形成,礦化並增強力學性質。ERβ的拮抗劑PHTPP在老年小鼠骨折模型中能促進骨癒合。本研究提出了一個新的骨癒合治療策略,並為將來的臨床實驗提供了堅實的基礎。 / Orthopaedic surgeons are challenged by impaired or delayed bone healing in elderly women, which requires prolongation of rehabilitation process or even induces high mortality. Up to date, there are no satisfactory therapeutic modalities for promoting aged bone healing clinically, and alternative therapeutic stratagem is therefore desirable. Bone healing recapitulates postnatal bone development. Direct periosteam-dependent bone formation (intramembranous ossification) and the formation of bone through a cartilage intermediate (endochondral ossification) are the two important processes during bone healing. Evidences from Estrogen Receptor β (ERβ), gene knockout female mouse studies have demonstrated that ERβ signaling participates in inhibiting both intramembranous and endochondral ossification during bone development. Clinical biopsy data demonstrated that the number of ERβ positive proliferative chondrocytes within fracture callus was increased in postmenopausal women. However, the role of ERβ in normal and aged bone healing is not examined yet. / This study examined role of ERβ in normal and aged bone healing and the future pharmaceutical application though the following part: 1) Establish an intramembranous ossification-dominant bone healing model. 2) Examine the role of ERβ in normal bone healing though two models. 3) Examine the role of ERβ in aged bone healing and investigate the potential therapeutical efficacy of an ERβ antagonist PHTPP in aged bone healing. / Study I was to establish an intramembranous ossification dominant bone healing mouse model. Previous available mouse femoral shaft fracture model was a endochondral ossification dominant bone healing model. This model was technically difficult to generate high reproducibility and the inside metal stabilization devices prevented the application of high-resolution in vivo micro-CT monitoring due to the metal artifact. In order to examine the role of ERβ in intramembranous ossification and apply the micro-CT monitoring technique, a drill-hole defect mouse model was developed. The study also confirmed bone healing was impaired in mice with ovariectomy -induced osteoporosis in drill-hole defect model. / Study II was to test the hypothesis that blockade of ERβ could promote normal bone healing. ERβ knockout mice were employed in this study and the hypothesis was examined in two models, the first is the traditional mouse femoral shaft fracture model, and the second is the drill-hole defect model that was developed in study I. Both models demonstrated that the bone healing in ERβ knockout mice was enhanced in the early stage of neovascularization and the middle stage of ossification but not by the end of healing compare to the wild type mice. / Study III was designed to further investigate the role of ERβ in aged bone healing. Femoral shaft fracture model was created in aged mice. The healing process was compared between the ERβ knockout mice and wild type mice. The results demonstrated that ERβ knockout mice was enhanced in the early stage of neovascularization, the middle stage of ossification and end stage of mechanical strength. The findings implied blockade of ERβ can be considered as another therapeutic strategy for aged fracture healing. PHTPP (4-[2-Phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-3-yl] phenol), an ERβ antagonist, was employed in aged mice femoral shaft fracture model. The bone healing quality of treated mice was compared with that of the vehicle control mice. It showed PHTPP treated mice had enhanced neovascularization, callus ossification and finally better mechanical properties than vehicle mice. / The present study depicted the role of ERβ in normal and aged bone healing. Key processes including neovascularization, intramembranous and endochondral ossification were all enhanced by blockade of ERβ, which led to fast callus formation, mineralization in normal bone and better mechanical properties in aged bone. ERβ antagonist PHTPP could promote aged bone healing in mouse osteotomy model. This study raised an alternative therapeutic stratagem for bone healing and provided solid basis for future clinical trials. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / He, Yixin. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (leaves 147-167). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / ABSTRACT --- p.i / 中文摘要 --- p.iv / PUBLICATIONS AND AWARDS --- p.vi / ACKNOWLEDGEMENTS --- p.xi / TABLE OF CONTENTS --- p.xii / LIST OF ABBREVIATIONS --- p.xvi / LIST OF FIGURES --- p.xviii / LIST OF TABLES --- p.xx / Chapter CHAPTER 1 --- INTRODUCTION AND LITERATURE REVIEW --- p.1 / Chapter 1.1 --- Fracture and Bone Healing --- p.2 / Chapter 1.1.1 --- Epidemiology and Impacts of Fractures --- p.2 / Chapter 1.1.2 --- Current Management and Limitations --- p.3 / Chapter 1.1.3 --- Bone Structures --- p.5 / Chapter 1.1.4 --- Bone Healing --- p.7 / Chapter 1.1.5 --- Aged Bone Healing --- p.12 / Chapter 1.1.6 --- Enhancements of Bone Healing --- p.17 / Chapter 1.2 --- Estrogen and Estrogen Receptors --- p.19 / Chapter 1.2.1 --- Estrogen Receptors α and β --- p.19 / Chapter 1.2.2 --- Molecular Actions of Estrogens --- p.20 / Chapter 1.2.3 --- Estrogen receptors in bone homeostasis --- p.24 / Chapter 1.3 --- Hypothesis --- p.28 / Chapter 1.4 --- Study Plan and Objectives --- p.32 / Chapter 1.4.1 --- Bone Healing Models --- p.32 / Chapter 1.4.2 --- Study Outline --- p.32 / Chapter 1.5 --- Figures and Tables --- p.34 / Chapter CHAPTER 2 --- ESTABLISHMENT OF DRILL-HOLE DEFECT HEALING MODEL IN MICE --- p.39 / Chapter 2.1 --- Introduction --- p.40 / Chapter 2.1.1 --- Limitations in currently available mouse models of osteoporotic bone healing --- p.40 / Chapter 2.1.2 --- Creation of a drill-hole defect at the mid-diaphysis of the femur for in vivo monitoring of bone healing in mice --- p.40 / Chapter 2.2 --- Materials and Methods --- p.43 / Chapter 2.2.1 --- Experimental animals --- p.43 / Chapter 2.2.2 --- Surgical protocol and experimental design --- p.43 / Chapter 2.2.3 --- Micro-CT analysis of intact femur --- p.44 / Chapter 2.2.4 --- In vivo micro-CT analysis of new bone formation in the drill-hole site --- p.45 / Chapter 2.2.5 --- Micro-CT-based angiography --- p.45 / Chapter 2.2.6 --- Histological examination --- p.46 / Chapter 2.2.7 --- Immunohistochemistry --- p.46 / Chapter 2.2.8 --- Quantitative real-time PCR --- p.47 / Chapter 2.2.9 --- Analysis of bone formation and resorption markers --- p.47 / Chapter 2.2.10 --- Mechanical testing --- p.48 / Chapter 2.2.11 --- Statistical analysis --- p.48 / Chapter 2.3 --- Results --- p.51 / Chapter 2.3.1 --- Confirmation of osteoporotic bone prior to generation of a drill-hole defect --- p.51 / Chapter 2.3.2 --- General observation of mice following drill-hole surgery --- p.51 / Chapter 2.3.3 --- In vivo micro-CT analysis of new bone in the drill-hole site of mouse femurs --- p.51 / Chapter 2.3.4 --- In vivo micro-CT analysis of new bone in drill-hole sites is highly reproducible --- p.52 / Chapter 2.3.5 --- Micro-CT angiography --- p.52 / Chapter 2.3.6 --- Histological observation of bone healing --- p.53 / Chapter 2.3.7 --- Immunohistochemical analysis of ER expressions during bone healing --- p.54 / Chapter 2.3.8 --- Quantitative real-time PCR analysis of gene expression during bone healing --- p.54 / Chapter 2.3.9 --- Analysis of bone formation and resorption markers during bone healing --- p.54 / Chapter 2.3.10 --- Mechanical testing of femurs from Sham and OVX mice --- p.55 / Chapter 2.4 --- Discussion --- p.56 / Chapter 2.4.1 --- Bone healing with dominant intramembranous ossification --- p.56 / Chapter 2.4.2 --- Impaired osteoporotic bone healing --- p.57 / Chapter 2.4.3 --- Reproducibility of the in vivo micro-CT method for analysis of bone healing --- p.58 / Chapter 2.4.4 --- Dysregulated expression of estrogen receptors and bone healing in OVX mice --- p.59 / Chapter 2.4.5 --- Study limitations --- p.60 / Chapter 2.4.6 --- Conclusions --- p.60 / Chapter 2.5 --- Figures and Tables --- p.61 / Chapter CHAPTER 3 --- ROLE OF ERβ IN NORMAL BONE HEALING --- p.72 / Chapter 3.1 --- Introduction --- p.73 / Chapter 3.2 --- Materials and Methods --- p.75 / Chapter 3.2.1 --- Part I Study --- p.75 / Chapter 3.2.1.1 --- Experimental animals --- p.75 / Chapter 3.2.1.2 --- Fracture model and experimental design --- p.75 / Chapter 3.2.1.3 --- Radiographic Analysis --- p.76 / Chapter 3.2.1.4 --- Micro-CT-based angiography --- p.76 / Chapter 3.2.1.5 --- Micro-CT analysis of callus --- p.77 / Chapter 3.2.1.6 --- Histological examination --- p.78 / Chapter 3.2.1.7 --- Dynamic Bone histomorphometric analysis --- p.78 / Chapter 3.2.1.8 --- Mechanical testing --- p.79 / Chapter 3.2.1.9 --- Quantitative real-time PCR --- p.80 / Chapter 3.2.1.10 --- Analysis of bone formation and resorption markers --- p.80 / Chapter 3.2.1.11 --- Statistical analysis --- p.81 / Chapter 3.2.2 --- Part II Study --- p.81 / Chapter 3.2.2.1 --- Experimental animals and design --- p.81 / Chapter 3.2.2.2 --- Evaluation protocols --- p.82 / Chapter 3.2.2.3 --- Statistical analysis --- p.82 / Chapter 3.3 --- Results --- p.83 / Chapter 3.3.1 --- Part I Study --- p.83 / Chapter 3.3.1.1 --- Radiographic Analysis --- p.83 / Chapter 3.3.1.2 --- Micro-CT angiography --- p.83 / Chapter 3.3.1.3 --- Micro-CT analysis of callus --- p.83 / Chapter 3.3.1.4 --- Histological and dynamic histomorphometric analysis --- p.84 / Chapter 3.3.1.5 --- Mechanical testing of the callus --- p.85 / Chapter 3.3.1.6 --- Quantitative real-time PCR analysis of gene expression --- p.85 / Chapter 3.3.1.7 --- Analysis of bone formation and resorption markers during bone healing --- p.85 / Chapter 3.3.2 --- Part II Study --- p.86 / Chapter 3.3.2.1 --- In vivo micro-CT analysis of new bone in the drill-hole site of mouse femurs --- p.86 / Chapter 3.3.2.2 --- Micro-CT angiography --- p.87 / Chapter 3.3.2.3 --- Histological observation of bone healing --- p.87 / Chapter 3.3.2.4 --- Quantitative real-time PCR analysis of gene expression --- p.88 / Chapter 3.3.2.5 --- Analysis of bone formation and resorption markers during bone healing --- p.88 / Chapter 3.3.2.6 --- Mechanical testing of femurs from WT and KO mice --- p.88 / Chapter 3.4 --- Discussion --- p.90 / Chapter 3.4.1 --- Angiogenesis --- p.90 / Chapter 3.4.2 --- Fracture Healing --- p.91 / Chapter 3.4.3 --- Estrogen receptor β and endochondral and intramembranous ossification --- p.93 / Chapter 3.4.4 --- Estrogen receptor β in aged bone --- p.94 / Chapter 3.4.5 --- Conclusions --- p.94 / Chapter 3.5 --- Figures and Tables --- p.95 / Chapter CHAPTER 4 --- ROLE OF ERβ AND ITS ANTAGONIST PHTPP IN AGED BONE HEALING --- p.113 / Chapter 4.1 --- Introduction --- p.114 / Chapter 4.2 --- Materials and Methods --- p.116 / Chapter 4.2.1 --- Experimental animals --- p.116 / Chapter 4.2.2 --- Fracture model and experimental design --- p.116 / Chapter 4.2.3 --- Radiographic Analysis --- p.117 / Chapter 4.2.4 --- Micro-CT-based angiography --- p.118 / Chapter 4.2.5 --- Micro-CT analysis of callus --- p.118 / Chapter 4.2.6 --- Histological examination --- p.119 / Chapter 4.2.7 --- Dynamic Bone histomorphometric analysis --- p.120 / Chapter 4.2.8 --- Mechanical testing --- p.120 / Chapter 4.2.9 --- Quantitative real-time PCR --- p.121 / Chapter 4.2.10 --- Analysis of bone formation and resorption markers --- p.122 / Chapter 4.2.11 --- Statistical analysis --- p.122 / Chapter 4.3 --- Results --- p.123 / Chapter 4.3.1 --- Radiographic Analysis --- p.123 / Chapter 4.3.2 --- Micro-CT angiography --- p.123 / Chapter 4.3.3 --- Micro-CT analysis of callus --- p.123 / Chapter 4.3.4 --- Histological and dynamic histomorphometric analysis --- p.124 / Chapter 4.3.5 --- Mechanical testing of the callus --- p.125 / Chapter 4.3.6 --- Quantitative real-time PCR analysis of gene expression during fracture healing --- p.125 / Chapter 4.3.7 --- Analysis of bone formation and resorption markers during bone healing --- p.126 / Chapter 4.4 --- Discussion --- p.127 / Chapter 4.4.1 --- Angiogenesis --- p.127 / Chapter 4.4.2 --- Fracture Healing --- p.128 / Chapter 4.4.3 --- Estrogen receptor β and endochondral ossification --- p.129 / Chapter 4.4.4 --- ERβ antagonist PHTPP --- p.130 / Chapter 4.4.5 --- Conclusions --- p.130 / Chapter 4.5 --- Figures and Tables --- p.131 / Chapter CHAPTER 5 --- STUDY LINITATIONS, FURTHER RESEARCH AND CONCLUDSIONS --- p.142 / Chapter 5.1 --- Limitations --- p.143 / Chapter 5.1.1 --- Bone healing model --- p.143 / Chapter 5.1.2 --- Estrogen receptors and transgenic mouse --- p.143 / Chapter 5.1.3 --- ERβ antagonist PHTPP --- p.144 / Chapter 5.2 --- Further Research --- p.144 / Chapter 5.2.1 --- ERβ signaling --- p.144 / Chapter 5.2.2 --- Preclinical Trial --- p.145 / Chapter 5.3 --- Conclusions --- p.146 / BIBLIOGRAPHY --- p.147
502

Bioactive PLGA/TCP composite scaffolds incorporating phytomolecule icaritin developed for bone defect repair. / Bioactive polylactide-co-glycolide/tricalcium phosphate composite scaffolds incorporating phytomolecule icaritin developed for bone defect repair / CUHK electronic theses & dissertations collection

January 2012 (has links)
研究背景:常规骨科临床在治疗大段骨缺损时需要移植骨和(或)支架材料,尤其复合有治疗性生物活性成分的复合材料尤为理想。本研究的策略在于发展开发一种具有生物活性和生物降解特性的的合并有植物小分子icaritin(外源性生长因子)或者骨形态发生蛋白2(BMP-2, 内源性生长因子)的复合骨支架用于骨再生。基于聚乳酸乙交酯共聚物和磷酸三钙,我们利用先进的快速成型技术编制了新型的符合有BMP-2 或者icaritin 的支架材料, 命名为PLGA/TCP ( 对照材料组) ,PLGA/TCP/BMP-2(BMP-2 编织复合治疗材料组), PLGA/TCP/icaritin (低,中,高剂量icaritin 编织复合治疗材料组)。 / 研究目标:本研究的总体目标是通过系统的体外实验和兔骨缺损的体内实验,建立和评估一种优化的复合递送系统,用于骨再生的应用。体内效果的研究体现在终点关于合并有外源性生长因子icaritin 和内源性生长因子BMP-2 的复合材料之间的比较研究。 / 材料和方法:低温快速成型机器用于复合材料的编制。PLGA 和TCP 作为基本载体材料,icaritin 和BMP-2 作为具有生物活性的外源性和内源性生长因子,分别进行编织复合。最终编织复合的支架材料命名为P/T 对照组,P/T/BMP-2 和低,中,高剂量P/T/icaritin 治疗组。另外,我们通过液体完全浸泡并在真空橱内干燥24 小时的方法制备了BMP-2 和icaritin 浸泡复合支架材料,分别是P/T+BMP-2(阳性对照组)和中剂量P/T+icaritin(比较组)。体外成骨潜能是通过兔骨髓干细胞和支架材料共培养的方法检测细胞接种,增殖效率,碱性磷酸酶活性,钙沉积以及成骨基因定量mRNA 表达检测。兔尺骨双侧阶段性缺损并植入复合支架材料的模型用于探讨支架材料体内成骨和成血管功效,影像学和活体检测CT 技术用于评估骨再生;借助CT的血管造影术和组织学检测新生血管;动态核磁共振技术用于检测骨缺损局部血液灌注功能,以及宿主组织和支架材料之间的相互作用。 / 研究结果: 对编织的支架材料的体外特性和成骨潜能进行鉴定和评估。显微CT 定量结果显示此支架材料具有互联大孔隙,平均孔隙率75±3.27%,平均孔径458±25.6μm。和对照组,icaritin 浸泡复合组,BMP-2 编织复合组比较,在icaritin 编织复合支架材料(n=6, p<0.05)特别是中剂量组(n=6, p<0.01)中,与材料共培养的兔骨髓干细胞(BMSCs)表现了较高的细胞接种效率,碱性磷酸酶活性和上调的胶原酶I,骨桥蛋白mRNA 表达,以及较多的钙结节沉积。同时,BMP-2 浸泡复合组表现了最佳的效果(n=6, p<0.01)。兔尺骨缺损模型体内试验结果显示,术后2,4,8周影像学和显微CT 显示,和对照组,icaritin 浸泡复合组,BMP-2 编织复合组比较,icaritin 编织复合支架材料(n=6, p<0.05)特别是中剂量组材料(n=6, p<0.01)植入的骨缺损区域有更多新生成骨。BMP-2 浸泡复合组表现了最多的新骨形成(n=6,p<0.01)。组织学结果同样也验证了在icaritin 编织复合支架材料(n=6, p<0.05)特别是中剂量组(n=6, p<0.01)中,存在较多的骨样组织和典型的板层骨。BMP-2 浸泡复合组也具有最多的新骨组织生成(n=6, p<0.01)。此外, 在icaritin 编织复合支架材料(n=6, p<0.05)尤其中剂量组(n=6, p<0.01)中,借助显微CT 的血管造影术检测发现,骨缺损区域出现较大的新生血管体积,动态核磁共振检查发现较好的局部血液灌注功能。在三种icaritin 剂量浓度的编织复合材料组之间比较,我们发现中浓度icaritin 复合比例的编织复合材料组显示了最佳的成骨潜能。 / 研究结论: 编织复合有外源性植物分子icaritin 的PLGA/TCP 支架材料在体内体外试验中均表现了预期的成骨分化潜能和骨再生能力,尤其是中剂量icaritin 编织复合材料。传统的应用前做体外复合的BMP-2 浸泡复合支架材料和更具吸引力和方便应用的植物分子icaritin 编织复合支架材料,都可以较好的增强骨修复,这很可能为新型生物复合材料潜在的临床有效性验证提供很好的基础。 / Background: Treatment of large bone defect in routine orthopaedic clinics requires bonegrafting and/or scaffold materials, especially desirable with composite material combined with therapeutic and bioactive agents for achieving better treatment outcome. The strategy of this study was to develop such a bioactive biodegradable composite bone scaffold incorporating a phytomolecule icaritin as an exogenous growth factor or bone morphogenetic protein-2 (BMP-2) as a known endogenous growth factor for bone regeneration. Based on polylactide-co-glycolide (PLGA) and Tricalcium Phosphate (TCP), we fabricated innovative BMP-2 or icaritin incorporated scaffold materials, namely PLGA/TCP (Control group), PLGA/TCP/BMP-2 and PLGA/TCP/low-, middle-, and high-icaritin with three different dosages of icaritin (Treatment groups) by an advanced prototyping technology. / Aims: The overall aim of the study was to establish and evaluate a local delivery system with slow release of bioactive agents for acceleration of bone regeneration in a bone defect model in rabbits. In vivo efficacy study served as end-point of this comparative study between composite scaffold incorporating exogenous growth factor icaritin and endogenous growth factor BMP-2. / Materials & Methods: Composite scaffolds were fabricated at -28ºC by a lowtemperature rapid-prototyping machine. PLGA and TCP were used as basic carrier materials, and icaritin or BMP-2 was incorporated as exogenous or endogenous bioactive growth factors, respectively. The incorporated scaffolds were named by PLGA/TCP (P/T, Control group), PLGA/TCP/BMP-2 and PLGA/TCP/low-, middle-, and high-icaritin (Treatment groups). In addition, we prepared BMP-2 and icaritin loading scaffolds, namely PLGA/TCP+BMP-2 as positive control group and PLGA/TCP+middle-icaritin as comparative group by entire immersion in the solution and dry in vacuum cabinet for 24 hours. In vitro osteogenic potentials of the designed bioactive composite scaffolds were tested in scaffold-co-cultured rabbit bone marrow stem cells (BMSCs) for measurement of cell seeding and proliferation efficiency, alkaline phosphatase (ALP) activity, calcium deposition, and quantitative mRNA expression of relative osteogenic genes. In vivo efficacy investigation was designed to evaluate osteogenesis and angiogenesis in a bilateral ulna bone segmental defect model implanted with composite scaffold in rabbits, with radiography and in vivo micro-CT for studying new bone regeneration and micro-CT-based angiography and histology for neovascularization, dynamic MRI for local blood perfusion function, as well as host tissue and scaffold material interactions. / Results: The in vitro characterization and osteogenic potential of the fabricated scaffolds were performed and confirmed, respectively. Micro-CT quantitation showed that the scaffolds had interconnected macropores with an average porosity of 75±3.27 % and pore size or diameter of 458±25.6 μm. Compared to P/T, P/T+icaritin and P/T/BMP-2 scaffolds, P/T/icaritin scaffolds (n=6, p<0.05), especially P/T/middle-icaritin (n=6, p<0.01) presented higher cell seeding efficiency, ALP activity and calcium nodules and up-regulated mRNA expressions of Collagen type I and Osteopontin of co-cultured BMSCs. P/T+BMP-2 showed the best osteogenic effects among all groups (n=6, p<0.01). In vivo measurement of x-ray and micro-CT in rabbit ulna bone defect model at week 2, 4 and 8 post-surgery showed more newly formed bone in the defects treated with P/T/icaritin scaffolds (n=6, p<0.05), especially P/T/middle-icaritin scaffold (n=6, p<0.01) compared with that of P/T, P/T+icaritin and P/T/BMP-2 groups. P/T+BMP-2 also showed the best bone formation among all groups (n=6, p<0.01). Histological results also demonstrated that there were more osteoid tissues and typical lamellar bone in surface and internal of the implants, as well as along the adjacent host bone in P/T/icaritin groups (n=5, p<0.05), especially P/T/middle-icaritin group (n=6, p<0.01). P/T+BMP-2 group showed the most newly formed bone (n=6, p<0.01). In addition, newly formed vessels in the defects were identified with micro-CT-based angiography and functionally supported by dynamic MRI for reflecting blood perfusion. The results showed more ingrowing new vessels in P/T/icaritin groups (n=6, p<0.05), especially P/T/middle-icaritin group (n=6, p<0.01), compared to P/T and P/T/BMP-2 groups. For comparing dose effects among three scaffolds incorporating different concentration of icaritin, we found that middle dose PLGA/TCP/icaritin composite scaffold showed the best osteogenic potential. / Conclusion: PLGA/TCP scaffolds incorporating exogenous phytomolecule icaritin demonstrated the desired osteogenic differentiation potential and bone regeneration capability as investigated in vitro and in vivo, where the middle dose of icaritin incorporating PLGA/TCP composite scaffold showed the best effects. These findings may form a good foundation for potential clinical validation of this innovative bioactive composite scaffold with either conventional endogenous BMP-2 for in vitro loading before application or more attractively and user-friendly incorporated with exogenous phytomolecule icaritin as a ready product for enhancing bone defect repair. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Chen, Shihui. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (leaves 173-198). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / Acknowledgements --- p.viii / Abstract --- p.x / 中文摘要 --- p.xiii / List of Abbreviations --- p.xvi / List of Tables --- p.xix / List of Figures --- p.xx / Journal Publications --- p.xxv / Journal Supplements --- p.xxv / Conference Abstracts --- p.xxvi / Chapter Chapter 1 --- Introduction / Chapter 1.1 --- Bone Defect in Orthopaedics --- p.2 / Chapter 1.2 --- Human Skeletons --- p.2 / Chapter 1.2.1 --- Bone Types and Function --- p.2 / Chapter 1.2.2 --- Bone Development --- p.4 / Chapter 1.2.3 --- Bone Physiology and Structure --- p.6 / Chapter 1.2.4 --- Bone Specific Markers --- p.7 / Chapter 1.2.5 --- Bone Cells --- p.9 / Chapter 1.2.6 --- Bone Marrow Stromal Cells --- p.12 / Chapter 1.3 --- Bone Regeneration and Remodeling --- p.13 / Chapter 1.3.1 --- Bone Defect Healing --- p.13 / Chapter 1.3.2 --- Non-union and Segmental Defect --- p.15 / Chapter 1.3.3 --- Bone Defect Treatment --- p.16 / Chapter 1.4 --- Angiogenesis in Bone Healing --- p.19 / Chapter 1.4.1 --- Blood Vessels Formation Process --- p.20 / Chapter 1.4.2 --- Growth Factor in Angiogenesis --- p.21 / Chapter 1.5 --- Biomaterials in Bone Tissue Engineering --- p.22 / Chapter 1.6 --- Scaffold-Based Therapy --- p.23 / Chapter 1.6.1 --- Bone Grafts --- p.23 / Chapter 1.6.1.1 --- Autografts --- p.23 / Chapter 1.6.1.2 --- Allografts --- p.25 / Chapter 1.6.2 --- Bone Graft Substitutes --- p.25 / Chapter 1.6.2.1 --- Bone Formation in Porous Scaffolds --- p.25 / Chapter 1.6.2.2 --- Degradable Polymers --- p.27 / Chapter 1.6.2.3 --- Non-Degradable Polymers --- p.29 / Chapter 1.6.2.4 --- Ceramics --- p.29 / Chapter 1.6.2.5 --- Bioactive Composite Materials --- p.30 / Chapter 1.7 --- Growth Factor-Based Therapy --- p.31 / Chapter 1.7.1 --- Endogenous Growth Factor--Bone Morphogenetic Proteins --- p.31 / Chapter 1.7.2 --- Exogenous phytomoleculeIcaritin--Icaritin --- p.31 / Chapter 1.7.3 --- Delivery of Growth Factor in Tissue Engineering --- p.34 / Chapter 1.8 --- Fabrication of Porous Composite Scaffolds --- p.37 / Chapter 1.8.1 --- Architectural Parameters of Bone Scaffolds --- p.37 / Chapter 1.8.2 --- Three-Dimensional Scaffold Fabrication --- p.37 / Chapter 1.9 --- Animal Models for Testing Bone Defects Healing --- p.39 / Chapter Chapter 2 --- Research Rationale and Study Objectives / Chapter 2.1 --- Research Rationale --- p.42 / Chapter 2.2 --- Study Objectives --- p.46 / Chapter Chapter 3 --- Bioactive Composite Scaffolds: Preparation, Morphology and Release Assay / Chapter 3.1 --- Introduction --- p.49 / Chapter 3.2 --- Materials and Methods --- p.50 / Chapter 3.2.1 --- Materials --- p.50 / Chapter 3.2.2 --- Fabrication of PLGA/TCP Incorporating BMP-2 or Icaritin --- p.51 / Chapter 3.2.3 --- Morphological Analysis of Composite Scaffolds --- p.53 / Chapter 3.2.3.1 --- Analysis of Porosity and Macropores Diameter Using High-resolution Micro-CT --- p.53 / Chapter 3.2.3.2 --- Analysis of Surface Morphology and Elements Composition Using Scanning Electron Microscopy --- p.54 / Chapter 3.2.4 --- Icaritin Content Assay in PLGA/TCP Scaffolds Incorporating Icaritin --- p.54 / Chapter 3.2.5 --- Preparation of PLGA/TCP Scaffold Coating BMP-2 or Icaritin --- p.55 / Chapter 3.2.6 --- In vitro Release Assay --- p.55 / Chapter 3.2.6.1 --- Icaritin Release from Scaffolds of PLGA/TCP Incorporating Icaritin --- p.55 / Chapter 3.2.6.2 --- BMP-2 Release from Scaffolds of PLGA/TCP Incorporating/Coating BMP-2 --- p.56 / Chapter 3.2.7 --- Mechanical Properties of Composite Scaffolds --- p.56 / Chapter 3.2.8 --- Statistical Analysis --- p.57 / Chapter 3.3 --- Results --- p.57 / Chapter 3.3.1 --- Morphological Analysis of Composite Scaffolds --- p.57 / Chapter 3.3.1.1 --- Porosity and Macroscopic Diameter --- p.57 / Chapter 3.3.1.2 --- Surface Morphology and Elements Composition --- p.58 / Chapter 3.3.2 --- Icaritin Content in Scaffolds of PLGA/TCP Incorporating Icaritin --- p.60 / Chapter 3.3.3 --- Icaritin Release from Scaffolds of PLGA/TCP Incorporating Icaritin --- p.60 / Chapter 3.3.4 --- BMP-2 Release from Scaffolds of PLGA/TCP Incorporating/Coating BMP-2 --- p.61 / Chapter 3.3.5 --- Mechanical Properties of Composite Scaffolds --- p.63 / Chapter 3.4 --- Discussion --- p.64 / Chapter 3.5 --- Summary --- p.71 / Chapter Chapter 4 --- Bioactive Composite Scaffolds: In vitro Degradation and Characterization Studies / Chapter 4.1 --- Introduction --- p.73 / Chapter 4.2 --- Materials and Methods --- p.74 / Chapter 4.2.1 --- Preparation of Composite Scaffolds for in vitro Degradation Assay --- p.74 / Chapter 4.2.2 --- Characterizations --- p.75 / Chapter 4.2.2.1 --- Scaffold Volume Changes --- p.75 / Chapter 4.2.2.2 --- Scaffold Weight Changes --- p.75 / Chapter 4.2.2.3 --- pH Value Changes --- p.75 / Chapter 4.2.2.4 --- Calcium Ion Release from Scaffolds --- p.76 / Chapter 4.2.3 --- Mechanical Properties Changes --- p.76 / Chapter 4.2.4 --- Statistical Analysis --- p.77 / Chapter 4.3 --- Results --- p.77 / Chapter 4.3.1 --- Volume Decrease --- p.78 / Chapter 4.3.2 --- Weight Loss --- p.78 / Chapter 4.3.3 --- pH Value Reduction --- p.79 / Chapter 4.3.4 --- Calcium Ion Release --- p.79 / Chapter 4.3.5 --- Mechanical Properties --- p.80 / Chapter 4.4 --- Discussion --- p.81 / Chapter 4.5 --- Summary --- p.84 / Chapter Chapter 5 --- In vitro Evaluation of Bone Marrow Stem Cells (BMSCs) Growing on Bioactive Composite Scaffolds / Chapter 5.1 --- Introduction --- p.87 / Chapter 5.2 --- Materials and Methods --- p.90 / Chapter 5.2.1 --- Preparation of Composite Scaffolds for in vitro Evaluation --- p.90 / Chapter 5.2.2 --- BMSCs Seeding Rate and Proliferation on Composite Scaffolds --- p.90 / Chapter 5.2.3 --- Alkaline Phosphate (ALP) Activity Assay --- p.92 / Chapter 5.2.4 --- Osteogenic Gene Expression Assay Using Quantitative Real-time PCR --- p.92 / Chapter 5.2.5 --- Calcium Deposition Assay Using Alizarin Red Staining --- p.93 / Chapter 5.2.6 --- Statistical Analysis --- p.94 / Chapter 5.3 --- Results --- p.94 / Chapter 5.3.1 --- Cells Seeding Efficiency and Proliferation --- p.94 / Chapter 5.3.2 --- ALP Activity --- p.97 / Chapter 5.3.3 --- Osteogenic Gene mRNA Expression --- p.97 / Chapter 5.3.4 --- Calcium Deposition --- p.98 / Chapter 5.4 --- Discussion --- p.99 / Chapter 5.5 --- Summary --- p.102 / Chapter Chapter 6 --- In vivo Evaluation of Bone Healing in Bone Defect Model Implanted with Bioactive Composite Scaffolds / Chapter 6.1 --- Introduction --- p.105 / Chapter 6.2 --- Materials and Methods --- p.106 / Chapter 6.2.1 --- Preparation of Composite Scaffolds for Implantation --- p.106 / Chapter 6.2.2 --- Establishment of Ulna Bone Segmental Defect in Rabbits --- p.107 / Chapter 6.2.3 --- Radiographic Evaluation of New Bone Area Fraction --- p.109 / Chapter 6.2.4 --- XtremeCT Evaluation of New Bone Formation and Bone Mineral Density (BMD) --- p.110 / Chapter 6.2.5 --- Histological Evaluation of New Bone Formation --- p.111 / Chapter 6.2.6 --- Evaluation of Rate of New Bone Formation and Mineral Apposition Rate (MAR) --- p.114 / Chapter 6.2.7 --- Evaluation of Neovascularization Using Micro-CT-based Microangiography --- p.116 / Chapter 6.2.8 --- Blood Perfusion Function Using Dynamic Magnetic Resonance Imaging (MRI) --- p.119 / Chapter 6.2.9 --- Statistical Analysis --- p.120 / Chapter 6.3 --- Results --- p.121 / Chapter 6.3.1 --- Radiographic Area Fraction of New Bone Formation --- p.123 / Chapter 6.3.2 --- XtremeCT New Bone Volume Fraction and BMD --- p.128 / Chapter 6.3.3 --- Histological New Bone Fraction --- p.133 / Chapter 6.3.4 --- Rate of New Bone Formation and MAR --- p.136 / Chapter 6.3.5 --- New Vessels Volume Evaluated Using Micro-CT-Based Microangiography --- p.140 / Chapter 6.3.6 --- Dynamic Blood Perfusion Function --- p.144 / Chapter 6.4 --- Discussion --- p.146 / Chapter 6.5 --- Summary --- p.151 / Chapter Chapter 7 --- Summaries, Conclusions, Limitations and Future Studies / Chapter 7.1 --- Introduction --- p.153 / Chapter 7.2 --- Bioactive Composite Scaffolds: Preparation, Morphology and in vitro Release Evaluation --- p.155 / Chapter 7.3 --- Bioactive Composite Scaffolds: in vitro Degradation and Characterization Studies --- p.159 / Chapter 7.4 --- In vitro Evaluation of the Response of Bone Marrow Stem Cells Growing on Bioactive Composite Scaffolds --- p.160 / Chapter 7.5 --- In vivo Evaluation of Bone Healing in Bone Defect Model Implanted with Bioactive Composite Scaffolds --- p.162 / Chapter 7.6 --- Evaluation of Dose-dependent Effects of Icaritin Mechanical Property, Degradation, and Osteogenic Potentials --- p.164 / Chapter 7.7 --- Conclusions --- p.170 / Chapter 7.8 --- Limitations and Future Studies --- p.171 / Chapter 7.9 --- References --- p.173 / Chapter 7.10 --- Appendix --- p.199 / Chapter 7.10.1 --- Animal Licence and Ethics --- p.199 / Chapter 7.10.2 --- Safety Approval --- p.201 / Chapter 7.10.3 --- Journal Supplements --- p.202 / Chapter 7.10.4 --- Conference Abstracts--Posters --- p.205 / Chapter 7.10.5 --- Conformation of Paper Submission --- p.208 / Chapter 7.10.6 --- Published Paper --- p.209
503

The regenerative potential of mouse heart. / CUHK electronic theses & dissertations collection

January 2006 (has links)
Heart failure, as a result of myocardial infarction, is a major cause of mortality in human. The main cause of heart failure is that when adult cardiomyocytes die in the infarct site they do not regenerate. Instead the infract site is replaced by fibroblasts and collagen scar. It is generally believed that cardiomyocytes have terminally differentiated and can not divide to replace cardiomyocytes that have lost following injury. However, recently published data have provided new evidence that there is a small but continuously turnover of cardiomyocytes in the adult heart. These new findings provide a new theory that the heart does possess a limited ability to regenerate. / I also examined the regenerative ability of cardiomyocyte in adult heart. MRL mice were used because previously it has been reported that the cardiomyocyte could proliferate in response to injury. To understand how the cardiomyocytes in the MRL mouse heart, I used a cryo-injury approach. I discovered that the cardiomyoctyes in MRL mouse hearts were capable of dividing shortly after cryo-injury. These MRL hearts healed without scarring in contrast to C57BL/6 control mice. It was discovered that BMP-2, GATA4 and Nkx2.5 were involved in the healing process. The activation of these genes induced the cardiomyocyte to re-enter the cell cycle so that new cardiomyocytes could replace the cell that have been lost in the infarct site. I also discovered that stem cells may also play a minor role in the healing process. / In summary, my research findings revealed that cardiomyocytes regeneration in the heart is a very complex process that involves the participation of many cells and signalling pathway. There findings raise many intriguing and important questions and are worthy of being addressed in the future. / Stem cell therapy has been proposed as a potential treatment for various myocardial diseases. Chen et al. (2004) found small chemical called reversine that could dedifferentiate C2C12 cells to become stem-like cells. In this study, I demonstrated that reversine could inhibit the growth of C2C12 cell. The presence of reversine in cell culture could significantly inhibit muscle-specific genes MyoD, Myogenin and Myf5 expression. These 3 muscle specific transcriptional genes are essential for maintaining muscle differentiation. The down regulation of these gene showed that reversine could dedifferentiate C2C12 cells. We also discovered that reversine-treated C2C12 cells could differentiate into cardiomyocytes when they were cocultured with cardiomyocytes or when transplanted into the infarct site of a cryo-injured heart. / To investigate the regenerative potential of cardiomyoctyes in adult heart, we tried first to uncover the signals that direct post-natal cardiomyocytes to enter into growth arrest and differentiation. In the first part of my study, I established that the cardiomycytes divided extensively in 2 day-old post-natal hearts and that the majority of these cells entered into growth arrest and terminal differentiation at day 13. Comparative proteomic techniques were used in order to identify proteins that might be associated with cardiomyocytes proliferation during terminal differentiation the mouse heart. Several proteins were found to be differently expressed and amongst them was cyclin I protein. Cyclin I was found strongly expressed in 13 day old hearts. The protein is involved in signaling growth arrested in cells. / Liu, Ye. / "November 2006." / Adviser: Lee Ka Ho. / Source: Dissertation Abstracts International, Volume: 68-09, Section: B, page: 5658. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (p. 142-172). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
504

Modifying chondroitin sulfation enhances retinal ganglion cell axon regeneration

Pearson, Craig Steven January 2018 (has links)
The failure of mammalian CNS neurons to regenerate their axons derives from a combination of intrinsic deficits and extrinsic obstacles. Following injury, chondroitin sulfate proteoglycans (CSPGs) accumulate within the glial scar that forms at the lesion site in response to the insult. CSPGs inhibit axonal growth and regeneration, an action mediated by their sulfated glycosaminoglycan (GAG) chains, especially those with 4-sulfated (4S) sugars. Arylsulfatase B (ARSB) selectively cleaves 4S groups from the non-reducing ends of GAG chains without disrupting other, potentially growth-permissive motifs. In this thesis, "Modifying Chondroitin Sulfation Enhances Retinal Ganglion Cell Axon Regeneration," I, Craig Pearson, seek to determine the time course and spatial distribution of CSPG accumulation in the glial scar following acute injury, and then to demonstrate that ARSB is effective in reducing the inhibitory actions of CSPGs. I examine the effects of ARSB in an in vitro model of the glial scar and in vivo, using optic nerve crush (ONC) in adult mice. ARSB is clinically approved for replacement therapy in patients with mucopolysaccharidosis VI and therefore represents an attractive candidate for translation to the human CNS. My findings illustrate the importance of CSPGs as a barrier to axon extension following injury, and show compelling evidence that selective modification of the sulfation pattern on GAG chains results in significant enhancement of RGC axonal regeneration. Finally, I combine ARSB treatment with a host of intrinsic pro-regenerative stimuli and show robust, long-distance regeneration of RGC axons through the optic chiasm and into the optic tract. Taken together, the results of this thesis argue for the therapeutic potential of modifying the extracellular matrix to promote regeneration of axons in the CNS.
505

Axonal regeneration in experimental intracerebral hemorrhage / CUHK electronic theses & dissertations collection

January 2014 (has links)
Spontaneous intracerebral haemorrhage (ICH) is one of the most lethal forms of stroke and has a relatively higher morbidity in Asian people. The high disability rate of 50% in all survivors and lack of clinically effective regeneration medicine make ICH a major unanswered problem worldwide. Considerable preclinical evidence suggests that neuroprotective interventions are urgently needed to lessen the effects of this disease. To date, less preclinical researches with proven positive results have successfully translated to the clinical setting, mainly due to poor modelling, a lack of behavioural testing, inadequate experimental design and failure to consider white matter damage. According to the few previous studies, white matter is a key predictor of ICH outcomes and a potential target of recovery. The long-term axonal degeneration in rodent ICH has been ignored for decades, and almost every preclinical study has focused on mechanisms in the acute phase. Clinically ICH patients may suffer a permanent loss of brain function or long-term deficits that take years to recover from. If the preclinical researches target the long-term axon degeneration/regeneration in the chronic stage, it might help to develop successful clinical interventions for functional reconstruction and rehabilitation. / Thus, to obtain the evidence of axonal degeneration and regeneration in the chronic stage of experimental ICH, this study at first systematically assessed the histological and functional outcomes of axonal regeneration in experimental ICH from day 3 to day 56 and secondly find the effective markers and methods for investigation axons in experimental ICH models in vivo. The long-term gait disturbance of a computer-generated CatWalk system, the electrophysiological changes, axonal loss by PKC gamma (PKCγ) immunohistochemistry and axonal degeneration by Bielschowsky silver staining were examined in unilateral striatum lesioned ICH (ST-ICH) rats. As the ST-ICH model demonstrated a spontaneous functional recovery within one or two month, we further developed a modified internal capsule lesioned ICH (IC-ICH) rat model which mimic clinical conditions, and investigated whether an internal capsule lesion leads to long-term axonal damage and long lasting functional deficits. / The finding demonstrated that haematoma in striatum led to severe axonal degeneration/loss in ipsilateral medullary corticospinal tract (CST) and functional deficits in a long-term duration (1-2 months after ICH). PKCγ level was an effective marker to quantify the axonal loss in experimental ICH and it indicated a significant axonal loss on day 56 after ICH in ipsilateral CST. Bielschowsky silver staining was a useful method to illustrate the morphological changes of axonal degeneration and regeneration in longitudinal sections of CST and it clearly showed the process of axon swelling, disrupted and regenerated in 2 months’ duration after ICH. / Somatosensory evoked potentials (SSEPs) and gait analysis were valuable functional assessments to characterize the long-term behavioral deficits resulting from axonal degeneration/regeneration in experimental ICH. The decrease in electrophysiological parameter SSEP amplitudes was observed in experimental ICH. Multiple gait parameters changed after ICH and some of that such as paw print area, paw pressure, stand index, duty cycle can be used as long-term evaluating markers in chronic stage of experimental ICH. / Compared to ST-ICH, the modified IC-ICH model exhibited a relatively smaller lesion volume with consistent axonal loss/degeneration and long-lasting neurological dysfunction at 2 months after ICH. Functionally, the impairment of the mNSS, ratio of contralateral forelimb usage, four limb stand index, contralateral duty cycle and ipsilateral SSEPs amplitude remained significant in the IC-ICH model at 56 days compared with the sham group, and asymmetries in the hind paw print area of the IC-ICH model exhibited significant differences from the ST-ICH model at 56 days. Structurally, the significant loss of PKCγ in ipsilateral CST of IC-ICH and the consistent axonal degeneration with several axonal retraction bulbs and enlarged tubular space was observed at 56 days after ICH. / In summary, the data from this study systematically characterize the histological and functional outcomes (especially gait parameter and SSEPs changes) in the experimental ICH model. A modified internal capsule lesioned ICH model was developed for rats, and proved to have long lasting neurological deficits. A comprehensive understanding of the dynamic progression after experimental ICH should aid further successful clinic translation in animal ICH studies, and provide new insights into the potential biomarkers and therapeutic targets of ICH. / 原發性腦出血(ICH)是一種致死性較高的卒中類型。在亞洲人群眾發病率相對較高。高致殘率和臨床上缺乏有效的治療手段,使得腦出血成為世界範圍內的健康問題。因此需要大量的臨床前研究尋找有效的治療方法。然而,迄今為止,臨床前研究獲得的陽性結果中,只有少數被成功的轉化到臨床應用。臨床轉化存在的部分失敗,歸結於幾個主要的因素包括動物模型的不足,動物行為學實驗的不恰當使用,實驗設計的缺陷以及對白質損傷機制的忽略。有研究認為,腦白質是卒中後功能恢復的關鍵指標和潛在治療靶點。腦出血慢性期的軸索變性在齧齒類動物模型中的研究被忽視了幾十年,而幾乎所有的臨床前研究都關注於急性期的機制。而臨床上倖存的腦出血病人大多罹患永久性的腦功能損傷,往往需要數年才能恢復或者難以恢復。如果臨床前轉化實驗以腦出血後慢性期的神經軸索損傷/再生作為研究目標,也許可以找到有助於卒中後功能重建和康復的治療手段。 / 為了尋找腦出血慢性期神經軸索損傷的證據,本研究首先從組織學和功能行為學兩個方面對對實驗性腦出血後的軸索再生進行了系統的評價。並建立了有效反應慢性期神經軸索再生的一系列方法和標誌物。本研究將步態分析,電生理評價, Bielschowsky銀染和PKCγ組織學染色結合起來對腦出血後的動物模型的軸索蛻變和再生進行長期觀察。結果顯示傳統的紋狀體損傷模型在1到2個月出現自發的功能恢復。本研究進一步假設內囊出血模型可能會獲得更加持久的功能損傷,也更為接近臨床患者的情況。因此,為了更好地研究腦出血慢性期的白質損傷和類比臨床情況,本研究建立了一種改進的內囊出血大鼠模型,並用組織學和行為學方法對其長期的功能損傷進行評價。 / 研究結果顯示,位於紋狀體的血腫可以引起同側的延髓皮質脊髓束(CST)出現嚴重的慢性期退化和變性,並同時伴有神經功能損傷。PKCγ是評價實驗性腦出血後神經軸索損傷程度的有效標誌物,資料表明同側皮質脊髓束PKCγ的表達水準在ICH損傷56天后仍有顯著降低。對延髓椎體CST的Bielschowsky銀染,可以從結構上有效的反應軸索變形和再生的過程,CST縱行切片染色清楚地顯示了腦出血損傷後2個月的時間內軸索水腫、斷裂和再生的過程。 / 體感誘發電位(SSEPs)和步態分析的方法可以從功能上對腦出血後神經軸索損傷進行較為全面的評價和定量分析。單側紋狀體腦出血可以引起同側皮層SSEP波幅的降低。多個步態分析參數在腦出血後也存在明顯的變化,其中前後掌爪印面積(paw print area),爪印壓力(paw pressure),站立指數(stand index),患側肢體站立百分比(duty cycle)都可作為觀察腦出血後慢性期功能損傷和恢復的評價指標。 / 改進後的內囊腦出血模型顯示病灶體積相比較小但神經軸索的損失和神經功能障礙較為持久。從神經功能方面評判,與假手術組相比,神經功能評分(mNSS),對側前肢使用率(cylinder test),四肢站立指數(stand index),患側肢體站立百分比(duty cycle)和患側體感誘發電位波幅(SSEPs amplitude)在出血後2個月仍然顯著降低。後掌的爪印面積(print area)與紋狀體腦出血的動物比較在出血後第56天后仍有顯著差異。從軸索結構評判,內囊出血模型顯示出更為嚴重的神經軸索退變和損傷,表現為在出血後56天PKCγ蛋白表達量的持續降低,軸索斷裂結節和管狀間隙的形成。 / 綜上所述,本研究系統地分析了實驗腦出血後的組織學和功能特點,建立了一個改進的內囊腦出血大鼠模型,並證明該模型存在更為持久的神經功能障礙和神經軸索損傷。 / Liu, Yao. / Thesis Ph.D. Chinese University of Hong Kong 2014. / Includes bibliographical references (leaves 168-200). / Abstracts also in Chinese. / Title from PDF title page (viewed on 18, October, 2016). / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only.
506

The Effects of Growth Hormone in the Inner Ear of Zebrafish (<i>Danio rerio</i>) during Hair Cell Regeneration

Lin, Chia-Hui 01 August 2010 (has links)
Although deafness is a universal problem, effective treatments have remained elusive. In order to develop potential treatments, an overall understanding of the cellular process of auditory hair cell regeneration, which occurs in fish but not mammals, must be established. A previous microarray analysis and qRT-PCR validation of noise-exposed zebrafish showed that growth hormone (GH) was significantly upregulated during the process of auditory hair cell regeneration. Thus, GH may play an important role during hair cell regeneration. However, cellular effects of exogenous GH in the zebrafish auditory hair cell regeneration have not been examined after noise exposure. To understand the effect of GH in hair cell regeneration, adult zebrafish were exposed to a 150 Hz pure tone at a source level of 179 dB re 1 μPa RMS for 36 hours. Afterward the fish were immediately injected intraperitoneally with carp recombinant GH (20 μg/gram of body mass) or buffer (0.1 M, pH 7.4 phosphate buffer) and then placed in a recovery tank. The effect of GH on apoptosis in fish inner ear end organs were examined using TUNEL-labeling. Cell proliferation was measured by BrdU incorporation assay. Hair cell regeneration was determined by phalloidin-labeling to allow visualization of hair cell stereociliary bundles. After GH injection, the numbers of TUNEL-labeled cells showed a significant decrease in all three inner ear end organs (saccule, lagena, utricle), suggesting GH may suppress hair cell death induced by acoustic trauma. Higher levels of cell proliferation were also observed in the ears of GH-injected fish, indicating that GH is capable of activating cell mitosis in the zebrafish auditory system. Following sound exposure, the GH-injected group exhibited greater numbers of saccular hair cell bundles compared to the buffer-injected group. These results indicate that GH promotes hair cell regeneration following acoustic damage. Future studies are needed to examine the potential therapeutic benefits of GH in the mammalian ear.
507

The Influence of Rural Regeneration Incubation Projection on the Community Autonomy for Cigu District in Tainan City

Huang, Jui-Lin 27 August 2012 (has links)
none
508

Efficacy of Membranous Cultured Periosteum for the Treatment of Patients with Severe Periodontitis: a Proof-of-Concept Study

Mizuno, Hirokazu, Kagami, Hideaki, Mase, Junji, Mizuno, Daiki, Ueda, Minoru 02 1900 (has links)
No description available.
509

Occurrence and reproductive role of remnant old-growth trees in mature Douglas-fir forests, southern Washington, Cascade Range /

Keeton, William Scott. January 2000 (has links)
Thesis (Ph. D.)--University of Washington, 2000. / Vita. Includes bibliographical references (leaves 107-124).
510

Policy learning and policy implementation in China: a case study of the Grain for Green project

Guo, Jia, 果佳 January 2010 (has links)
published_or_final_version / Politics and Public Administration / Doctoral / Doctor of Philosophy

Page generated in 0.7469 seconds