1 |
Ill-Posed Problems in Early VisionBertero, Mario, Poggio, Tomaso, Torre, Vincent 01 May 1987 (has links)
The first processing stage in computational vision, also called early vision, consists in decoding 2D images in terms of properties of 3D surfaces. Early vision includes problems such as the recovery of motion and optical flow, shape from shading, surface interpolation, and edge detection. These are inverse problems, which are often ill-posed or ill-conditioned. We review here the relevant mathematical results on ill-posed and ill-conditioned problems and introduce the formal aspects of regularization theory in the linear and non-linear case. More general stochastic regularization methods are also introduced. Specific topics in early vision and their regularization are then analyzed rigorously, characterizing existence, uniqueness, and stability of solutions.
|
2 |
Priors Stabilizers and Basis Functions: From Regularization to Radial, Tensor and Additive SplinesGirosi, Federico, Jones, Michael, Poggio, Tomaso 01 June 1993 (has links)
We had previously shown that regularization principles lead to approximation schemes, as Radial Basis Functions, which are equivalent to networks with one layer of hidden units, called Regularization Networks. In this paper we show that regularization networks encompass a much broader range of approximation schemes, including many of the popular general additive models, Breiman's hinge functions and some forms of Projection Pursuit Regression. In the probabilistic interpretation of regularization, the different classes of basis functions correspond to different classes of prior probabilities on the approximating function spaces, and therefore to different types of smoothness assumptions. In the final part of the paper, we also show a relation between activation functions of the Gaussian and sigmoidal type.
|
3 |
Convergence rates for variational regularization of statistical inverse problemsSprung, Benjamin 04 October 2019 (has links)
No description available.
|
Page generated in 0.128 seconds