Spelling suggestions: "subject:"reinforced concrete, fiber.""
1 |
Modelling of the cellulose and cement mineral bond and the mechanism of aluminous compounds in retarding cement carbonationPeng, Joe Zhou, University of Western Sydney, College of Science, Technology and Environment, School of Science, Food and Horticulture January 2001 (has links)
Analysis of calcium and oxygen atom arrays of known cement minerals and the structures of cellulose polymorphs were performed to see if it was possible to arrange a cellulose fibre on a cement mineral face such that the fibre is bonded by a repeating array of hydrogen or hydroxide coordination bonds for the full length of the attachment. Of the sixteen important cement minerals modelled, xonotlite, foshagite, tricalcium aluminate hydrate, chondronite and rosenhahnite could form such bonds to modified cellulose fibre. However, this was not the case for other cement minerals, especially tobermorite. Alumium hydroxide, when added to cement-quartz pastes and autoclaved at 180 degrees C, was found to improve the cement's ability to resist carbonation. / Doctor of Philosophy (PhD)
|
2 |
Modelling of the cellulose and cement mineral bond and the mechanism of aluminous compounds in retarding cement carbonation /Peng, Joe Zhou. January 2001 (has links)
Thesis (PhD) -- University of Western Sydney, 2001. / "A thesis submitted for the degree of Doctor of Philosophy in the University of Western Sydney." Bibliography: leaves 163 - 170.
|
Page generated in 0.0756 seconds