• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Reinforcement in Biology : Stochastic models of group formation and network construction

Ma, Qi January 2012 (has links)
Empirical studies show that similar patterns emerge from a large number of different biological systems. For example, the group size distributions of several fish species and house sparrows all follow power law distributions with an exponential truncation. Networks built by ant colonies, slime mold and those are designed by engineers resemble each other in terms of structure and transportation efficiency. Based on the investigation of experimental data, we propose a variety of simple stochastic models to unravel the underlying mechanisms which lead to the collective phenomena in different systems. All the mechanisms employed in these models are rooted in the concept of selective reinforcement. In some systems the reinforcement can build optimal solutions for biological problem solving. This thesis consists of five papers. In the first three papers, I collaborate with biologists to look into group formation in house sparrows  and the movement decisions of damsel fish.  In the last two articles, I look at how shortest paths and networks are  constructed by slime molds and pheromone laying ants, as well as studying  speed-accuracy tradeoffs in slime molds' decision making. The general goal of the study is to better understand how macro level patterns and behaviors emerges from micro level interactions in both spatial and non-spatial biological systems. With the combination of mathematical modeling and experimentation, we are able to reproduce the macro level patterns in the studied biological systems and predict behaviors of the systems using minimum number of parameters.

Page generated in 0.0894 seconds