• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rekonstrukce stávajícího mostu / Reconstruction of the existing bridge structure

Biller, Martin January 2013 (has links)
Master's thesis deals with the reinforcement and expansion of girder bridge (continuous bridge with three spans) across the river Jihlava in Ivančice and reinforcement on the load class A. This is done by using an additional external prestressing cables and composite monolithic slab. Amplification is verified by calculation of load capacity.
2

Effectiveness of Web Reinforcement around Openings in Continuous Concrete Deep Beams.

Yang, Keun-Hyeok, Ashour, Ashraf 07 1900 (has links)
yes / Twenty two reinforced concrete continuous deep beams with openings and two companion solid deep beams were tested to failure. The main variables investigated were the configuration of web reinforcement around openings, location of openings, and shear span-to-overall depth ratio. The influence of web reinforcement on controlling diagonal crack width and load capacity of continuous deep beams with openings was significantly dependent on the location of openings. The development of diagonal crack width and load capacity of beams having openings within exterior shear spans were insensitive to the configuration of web reinforcement. However, for beams having openings within interior shear spans, inclined web reinforcement was the most effective type for controlling diagonal crack width and increasing load capacity. It has also observed that higher load and shear capacities were exhibited by beams with web reinforcement above and below openings than those with web reinforcement only above openings. The shear capacity at failed shear span of continuous beams tested is overestimated using Kong et al’s formula developed for simple deep beams with openings.
3

Lateral Resistance of H-Piles and Square Piles Behind an MSE Wall with Ribbed Strip and Welded Wire Reinforcements

Luna, Andrew I. 01 May 2016 (has links)
Bridges often use pile foundations behind MSE walls to help resist lateral loading from seismic and thermal expansion and contraction loads. Overdesign of pile spacing and sizes occur owing to a lack of design code guidance for piles behind an MSE wall. However, space constraints necessitate the installation of piles near the wall. Full scale lateral load tests were conducted on piles behind an MSE wall. This study involves the testing of four HP12X74 H-piles and four HSS12X12X5/16 square piles. The H-piles were tested with ribbed strip soil reinforcement at a wall height of 15 feet, and the square piles were tested with welded wire reinforcement at a wall height of 20 feet. The H-piles were spaced from the back face of the MSE wall at pile diameters 4.5, 3.2, 2.5, and 2.2. The square piles were spaced at pile diameters 5.7, 4.2, 3.1, and 2.1. Testing was based on a displacement control method where load increments were applied every 0.25 inches up to three inches of pile deflection. It was concluded that piles placed closer than 3.9 pile diameters have a reduction in their lateral resistance. P-multipliers were back-calculated in LPILE from the load-deflection curves obtained from the tests. The p-multipliers were found to be 1.0, 0.85, 0.60, and 0.73 for the H-piles spaced at 4.5, 3.2, 2.5, and 2.2 pile diameters, respectively. The p-multipliers for the square piles were found to be 1.0, 0.77, 0.63, and 0.57 for piles spaced at 5.7, 4.2, 3.1, and 2.1 pile diameters, respectively. An equation was developed to estimate p-multipliers versus pile distance behind the wall. These p-multipliers account for reduced soil resistance, and decrease linearly with distance for piles placed closer than 3.9 pile diameters. Measurements were also taken of the force induced in the soil reinforcement. A statistical analysis was performed to develop an equation that could predict the maximum induced reinforcement load. The main parameters that went into this equation were the lateral pile load, transverse distance from the reinforcement to the pile center normalized by the pile diameter, spacing from the pile center to the wall normalized by the pile diameter, vertical stress, and reinforcement length to height ratio where the height included the equivalent height of the surcharge. The multiple regression equations account for 76% of the variation in observed tensile force for the ribbed strip reinforcement, and 77% of the variation for the welded wire reinforcement. The tensile force was found to increase in the reinforcement as the pile spacing decreased, transverse spacing from the pile decreased, and as the lateral load increased.
4

Experimentální a numerická analýza zesílení ŽB prvku na smykové účinky / Experimental and numerical analysis of reinforced concrete reinforcement member subjected to shear forces

Folvarčná, Ingrid January 2016 (has links)
Design and manufacture of test elements for experimental laboratory testing of shear damage. Testing of selected mechanical characteristics of test elements. Experimental analysis of test elements in the lab, creating a mathematical model in ATENA software, static analysis. Evaluation of experimental analysis and comparison with the values of static analysis. Final overall evaluation.

Page generated in 0.0785 seconds