1 |
Representações irredutíveis unitárias do grupo de Poincaré / Irreducible unitary representations of the Poincaré Group.Germano, Guilherme Rocha 17 November 2016 (has links)
A teoria de representações de grupos topológicos Hausdorff, localmente compactos e separáveis em espaços de Hilbert separáveis é introduzida, especificada para grupos compactos e comutativos e são obtidas realizações explicitas das representações finitas irredutíveis de $SU(2)$, $SO(3)$, SL(2,C) e $SO(1,3)^{\\uparrow}$. A teoria das representações induzidas é então apresentada e, depois de feita a conexão entre teorias quântico relativísticas livres no espaço plano de Minkowski e representações unitárias irredutíveis de $R^4 times$ SL(2,C), aplicada para obter tais representações e realizar explicitamente os casos correspondentes a partículas elementares com spin definido em espaços que não admitem a definição de operadores de reflexão espacial. A inclusão da operação de reflexão espacial é feita através de uma variação do método das representações induzidas que conduz a representações unitárias {\\bf redutíveis} de $R^4 times$ SL(2,C) para as quais são obtidas equações de onda selecionando espaços irredutíveis, os quais definem partículas elementares admitindo paridade no contexto das teorias quânticas de campos livres. / The theory of locally compact, second countable and Hausdorff topological group representations in separable Hilbert spaces is introduced, and specified to compact and commutative groups. Explicit realizations of the finite irreducible representations of $SU(2)$, $SO(3)$, SL(2,C) and $SO(1,3)^{\\uparrow}$ are obtained. The theory of induced representations is then presented and, after the connection between quantum relativistic free theories in flat Minkowski space and unitary irreducible representations of $R^4 times$ SL(2,C) is made, it is applied and used to classify these representations. Explicit realizations of the cases corresponding to elementary particles with definite spin in spaces which do not allow spacial reflection operators are presented. Spacial reflections are carried with a variation of the induced representation method that leads to unitary {\\bf reducible} representations of $R^4 times$ SL(2,C). Wave equations selecting irreducible spaces that define elementary particles admitting parity in quantum free field theories are derived.
|
2 |
Representações irredutíveis unitárias do grupo de Poincaré / Irreducible unitary representations of the Poincaré Group.Guilherme Rocha Germano 17 November 2016 (has links)
A teoria de representações de grupos topológicos Hausdorff, localmente compactos e separáveis em espaços de Hilbert separáveis é introduzida, especificada para grupos compactos e comutativos e são obtidas realizações explicitas das representações finitas irredutíveis de $SU(2)$, $SO(3)$, SL(2,C) e $SO(1,3)^{\\uparrow}$. A teoria das representações induzidas é então apresentada e, depois de feita a conexão entre teorias quântico relativísticas livres no espaço plano de Minkowski e representações unitárias irredutíveis de $R^4 times$ SL(2,C), aplicada para obter tais representações e realizar explicitamente os casos correspondentes a partículas elementares com spin definido em espaços que não admitem a definição de operadores de reflexão espacial. A inclusão da operação de reflexão espacial é feita através de uma variação do método das representações induzidas que conduz a representações unitárias {\\bf redutíveis} de $R^4 times$ SL(2,C) para as quais são obtidas equações de onda selecionando espaços irredutíveis, os quais definem partículas elementares admitindo paridade no contexto das teorias quânticas de campos livres. / The theory of locally compact, second countable and Hausdorff topological group representations in separable Hilbert spaces is introduced, and specified to compact and commutative groups. Explicit realizations of the finite irreducible representations of $SU(2)$, $SO(3)$, SL(2,C) and $SO(1,3)^{\\uparrow}$ are obtained. The theory of induced representations is then presented and, after the connection between quantum relativistic free theories in flat Minkowski space and unitary irreducible representations of $R^4 times$ SL(2,C) is made, it is applied and used to classify these representations. Explicit realizations of the cases corresponding to elementary particles with definite spin in spaces which do not allow spacial reflection operators are presented. Spacial reflections are carried with a variation of the induced representation method that leads to unitary {\\bf reducible} representations of $R^4 times$ SL(2,C). Wave equations selecting irreducible spaces that define elementary particles admitting parity in quantum free field theories are derived.
|
3 |
Distribution spatiale de fermions fortement corrélés en interaction forte : formalisme, méthodes et phénoménologie en structure nucléaire / Spatial distribution of strongly correlated fermions in strong interaction : formalism, methods and phenomenology applied to nuclear structureLasseri, Raphaël-David 05 September 2018 (has links)
Le noyau est par essence un système complexe, composé de fermions composites fortement corrélés, soumis à la fois aux interactions forte, faible et électromagnétique. La description de sa structure interne est un enjeu important de la physique moderne. Ainsi la manière qu'ont les nucléons de s'organiser au sein des noyaux atomiques est le reflet des corrélations auxquelles ils sont soumis. On comprend alors que la complexité des interactions inter-nucléoniques se traduit par une grande richesse de schémas selon lesquels les nucléons se distribuent dans les systèmes nucléaires. Le noyau révèle une structure délocalisée où les nucléons se répartissent de façon quasi-homogène dans le volume nucléaire. Mais il peut également présenter des sous-structures localisées, appelées clusters ou agrégats nucléaires. Ces travaux s’inscrivent dans le cadre des approches de type champ-moyen relativiste (RMF), permettant un traitement universel de la phénoménologie nucléaire. Dans un premier temps, nous exposerons les éléments de formalisme permettant la construction d’une telle approche en partant des interactions fondamentales qui sous-tendent la dynamique nucléonique au sein des noyaux. Néanmoins ce formalisme ne permet pas de rendre compte des propriétés expérimentales des observables nucléaires : une stricte approche de type champ-moyen, néglige de trop nombreuses classes de corrélations. Nous discuterons alors des méthodes existantes pour prendre en compte ces corrélations, de type particule-trou (déformation) ainsi que de type particules-particules (appariement). Dans un premier temps, une nouvelle méthode diagrammatique, permettant une approche perturbative des corrélations est proposée ainsi qu’une implémentation automatisée associée basée sur une théorie combinatoire. Ensuite, nous reviendrons à un traitement phénoménologique des corrélations particules-trous, pour nous focaliser sur l’impact des corrélations particules-particules. En premier lieu nous discuterons le phénomène de formation de paires nucléoniques en utilisant le langage de la théorie des graphes, langage permettant plusieurs simplifications formelles ainsi qu’une compréhension différentes de l’appariement. Les corrélations d’appariement seront tout d’abord prise en compte par une approche de type Hartree-Bogolioubov relativiste. Toutefois ce formalisme ne conservant pas le nombre de particules, nous présenterons une approche projective permettant de le restaurer. L’effet de cette restauration sur le système sera également étudié. Seront ensuite présentés les différentes implémentations et optimisations numériques, développées pendant cette thèse, pour un traitement général des déformations nucléaires. Munis de ces outils, nous reviendrons sur la formation d’agrégats nucléaires, les clusters, comme phénomène émergent issu de la prise en compte de certaines classes de corrélations. Tout d’abord des mesures de localisations et paramètres quantifiant la dispersion des fonctions d’ondes nucléoniques sont proposées, permettant d’analyser le noyau pour localiser et comprendre l’origine de l’agrégation. L’analyse de ces quantités est présentée et permet la première description unifiée de la formation de clusters aussi bien dans les noyaux légers (Néon, Magnésium) que dans les noyaux lourds émetteurs alpha (Polonium). L’émergence des clusters est ensuite décrite au travers du prisme des transitions de phases quantiques. Un paramètre d’ordre est exhibé ainsi que la caractérisation de ce phénomène en tant que transition de Mott. L’influence des corrélations d’appariement sur la formation de clusters est analysée et une étude précise des propriétés spatiales des paires de nucléons est menée pour plusieurs noyaux dans différentes régions de masses. Enfin une méthode de prise en compte de corrélations à 4-corps, dite de quartet est proposée pour tenter d’expliquer l’émergence des clusters en tant que préformation de particules alpha. / The atomic nucleus is intrinsically a complex system, composed of strongly correlated non-elementary fermions, sensitive to strong and electroweak interaction. The description of its internal structure is a major challenge of modern physics. In fact the complexity of the nucleon-nucleon interaction generates correlations which are responsible of the diversity of shapes that the nuclei can adopt. Indeed the nuclei can adopt either quasi-homogeneous shapes when nucleons are delocalized or shapes where spatially localized structure can emerge, namely nuclear clusters. This work is an extension of relativistic mean-fields approach (RMF), which allows an universal treatment of nuclear phenomenology. In a first time we will present the necessary formalism to construct such an approach starting with the fundamental interactions underlying nucleons dynamics within the nucleus. However this approach doesn't allow an accurate reproduction of experimental properties: a purely mean-field approach neglects to many correlations. Existing methods to treat both particle-hole (deformation), particle-particle (pairing) correlations will be discussed. First we will propose a new diagrammatic method, which take correlation into account in a perturbative way, the implementation of this approach using combinatory theory will be discussed. Then we will get back to a phenomenological treatment of particle-hole correlations, to focus on the impact of particle-particle. Formation of nucleonic pair will be discussed in the language of graph theory, allowing several formal simplifications and shed a different light on pairing. Pairing correlations will be at first treated using a relativistic Hartree-Bogolioubov approach. Nevertheless this formalism doesn't conserve particle number, and thus we will present a projective approach to restore it. The effect of this restoration will also be studied. Then to describe general nuclear deformation, several implementations and optimizations developed during this PhD will be presented. With this tools, clusterisation will be investigated as phenomenon emerging for certain class of correlations. Localization measure will be derived allowing a clearer understanding of cluster physics. The analysis of theses quantities makes possible a first unified description of cluster formation both for light nuclei (Neon) or for heavy alpha emitters (Polonium). Cluster emergence will be described as a quantum phase transition, an order parameter will be displayed and this formation will be characterized as a Mott transition. The influence of pairing correlations on cluster formation is studied and a detailed study of pairs spatial properties is performed for nuclei from several mass regions. Lastly a method allowing treatment of 4-body correlations (quartteting) is proposed to explain cluster emergence as alpha particle preformation.
|
Page generated in 0.0788 seconds