• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 117
  • 29
  • 7
  • 6
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 190
  • 190
  • 75
  • 63
  • 49
  • 30
  • 25
  • 25
  • 16
  • 14
  • 14
  • 14
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Cloning and charaterisation of the Thyrotrophin-releasing hormone receptor and Gonadotrophin-relasing hormone receptor from chicken pituitary gland

Sun, Yuh-Man January 1998 (has links)
The hypothalamic hormones, thyrotrophin-releasing hormone (TRH) and gonadotrophin-releasing hormone (GnRH), play pivotal roles in the growth and sexual maturation of chickens. In chickens, TRH regulates the release and synthesis of thyrotrophin (TSH) and also acts as a growth hormone-releasing factor. GnRH stimulates the release and synthesis of gonadotrophins (LH and FSH). TRH and GnRH are released and stored in the median eminence, and both hormones are transported into the pituitary gland via the hypophysial portal circulation. TRH and GnRH exert their physiological functions by binding to their specific receptors (TRH receptor and GnRH receptor, respectively) on the surface of cells in the pituitary gland. The activated receptors couple to guanine nucleotide-binding regulatory proteins (G proteins), Gq and/or G11, which in turn triggers the secondary messenger [1,2- diacylglycerol (DAG) and inositoltrisphosphate (IP3)] signalling cascade. The signalling generates the physiological effects of the hormones. The TRH-R and GnRH-R are members of G-protein coupled receptor (GPCR) family. The objective of this thesis was to clone and characterise the chicken TRH and GnRH receptors as useful tools for investigating the regulatory roles of TRH and GnRH receptors in the growth and sexual maturation of chickens. In addition, sequence information of the receptors would potentially assist in elucidating the binding sites and the molecular nature of the processes involved in receptor activation.
122

Psychoneuroimmunology in terms of the two main stress axes: Sickness behaviour as trigger for development of mental disorders

Viljoen, Margaretha 27 September 2005 (has links)
Please read the abstract in the section 00front of this document / Thesis (DPhil (Psychiatry))--University of Pretoria, 2003. / Psychiatry / unrestricted
123

Development of Neuropeptide Receptor Ligands for the Control of Reproductive Systems / 生殖内分泌系を制御する神経ペプチド受容体リガンドの創製研究

Misu, Ryosuke 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(薬科学) / 甲第18929号 / 薬科博第43号 / 新制||薬||5(附属図書館) / 31880 / 京都大学大学院薬学研究科医薬創成情報科学専攻 / (主査)教授 大野 浩章, 教授 高須 清誠, 教授 竹本 佳司 / 学位規則第4条第1項該当 / Doctor of Pharmaceutical Sciences / Kyoto University / DFAM
124

Expression and Function of Corticotropin-releasing Hormone in Anthropoid Primate Placenta

Dunn-Fletcher, Caitlin E. January 2018 (has links)
No description available.
125

Dissecting anxiety in the vervet monkey : a search for association between polymorphisms in the corticotropin releasing hormone (CRH) and neuropeptide Y (NPY) genes and anxious behavior

Elbejjani, Martine January 2007 (has links)
No description available.
126

Corticotrophin-releasing hormone stimulation tests for the infants with relative adrenal insufficiency / 相対的副腎機能不全の児に対するコルチコトロピン放出ホルモン分泌刺激試験

Iwanaga, Kougoro 23 May 2023 (has links)
京都大学 / 新制・論文博士 / 博士(医学) / 乙第13553号 / 論医博第2282号 / 新制||医||1067(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 齋藤 潤, 教授 万代 昌紀, 教授 長尾 美紀 / 学位規則第4条第2項該当 / Doctor of Medical Science / Kyoto University / DFAM
127

Role of the endocrine and immune systems in the developing and regressing corpus luteum

Davis, Tracy Leigh 17 June 2004 (has links)
No description available.
128

Modulation of the human hair follicle pigmentary unit by corticotrophin-releasing hormone and urocortin peptides

Kauser, Sobia, Slominski, A.T., Wei, E.T., Tobin, Desmond J. January 2006 (has links)
No / Human skin is a local source of corticotropin-releasing hormone (CRH) and expresses CRH and CRH receptors (CRH-R) at mRNA and protein levels. Epidermal melanocytes respond to CRH by induction of cAMP with up-regulation of pro-opiomelanocortin gene expression and subsequent production of adrenocorticotropin hormone. However, the role of CRH/CRH-R in melanocyte biology is complicated by the significant heterogeneity of cutaneous melanocyte subpopulations, from continuously active and UV-responsive melanocytes in epidermis to UV nonresponsive, hair growth cycle-coupled melanogenesis in hair follicles. In the present study we report that normal human scalp hair follicle melanocytes express CRH at the mRNA level. Furthermore, CRH, urocortin and CRH-R 1 and 2 were differentially expressed in follicular melanocytes, fibroblasts, and keratinocytes depending on anatomic location and differentiation status in situ and in vitro. Stimulation of follicular melanocytes with CRH and CRH peptides, modified for selectivity for CRH-R1 and/or CRH-R2, variably induced cell melanogenesis, dendricity, and proliferation. CRH-peptides also stimulated the expression and activity of Tyrosinase, and expression of Tyrosinase-related protein-1 and-2. However, a modified urocortin peptide highly selective for CRH-R2 down-regulated melanocyte differentiation phenotype. This study indicates that CRH peptides can differentially influence hair follicle melanocyte behavior not only via CRH-R1 signaling but also by complex cross-talk between CRH-R1 and CRH-R2.¿Kauser, S., Slominski, A., Wei, E. T., Tobin, D. J. Modulation of the human hair follicle pigmentary unit by corticotropin-releasing hormone and urocortin peptides.
129

Rôle du RFRP dans le contrôle central de la reproduction saisonnière en fonction du sexe et de la photopériode / The roles of RFRP in the central control of reproduction : photoperiodic and sex-specific differences

Henningsen, Jo Beldring 18 May 2016 (has links)
Le RFRP est une neuropeptide impliqué dans la régulation de l’axe reproducteur, mais ses effets varient en fonction du sexe et des espèces. Le but de cette étude était de décrire en détails l’organisation du système RFRP et de caractériser son rôle dans le contrôle circadien et saisonnier de l’axe reproducteur de hamsters femelles. Les résultats montrent que le système RFRP est régulé par la photopériode et que son niveau d’expression est plus élevé chez les femelles que chez les mâles. Cela se traduit par des actions spécifiques sur l’axe gonadotrope femelle. En effet, L’activité des neurones à RFRP est diminuée au moment du pic pré-ovulatoire de LH et des injections centrales de RFRP-3 dans l’heure qui précède le pic de LH induisent une diminution de l’amplitude de la sécrétion de LH, démontrant une implication du RFRP dans la régulation circadienne du pic pré-ovulatoire de LH. Par ailleurs, des infusions chroniques de RFRP-3 chez des hamsters femelles sexuellement inactifs sont capables de réactiver le fonctionnement de l‘axe reproducteur, ce qui montre que le RFRP a un également un rôle régulateur essentiel dans le contrôle saisonnier de la reproduction. / RFRP neurons regulate the reproductive axis, however, their effects depend on species and sex. Here, we aimed at providing a neuroanatomical description of the RFRP system in the Syrian hamster and at investigating the role of RFRP in the daily and seasonal control of female reproduction. We show that besides being regulated by annual changes in photoperiod, the RFRP system is more strongly expressed in females than in males. In line with this, we unveil that RFRP has multiple roles in regulating female reproduction. RFRP neuronal activity is specifically reduced at the time of the pre-ovulatory LH surge and central RFRP-3 administration prior to the surge decreases LH peak levels, altogether pointing towards a daily down-regulation of the inhibitory RFRP signal necessary for proper generation of the LH surge. Moreover, chronic RFRP-3 infusion in sexually inactive females, with endogenous low RFRP expression, completely reactivates the reproductive axis. Taken together, we demonstrate that RFRP is a key component in the seasonal control of reproduction while at the same time specifically regulating cyclic events controlling reproductive activity in females.
130

Personality and the HPA-axis in Association with Postpartum Depression

Iliadis, Stavros I January 2016 (has links)
Postpartum depression is a psychiatric disorder affecting a substantial proportion of newly delivered women, and remains a significant cause of childbirth-related morbidity. The aim of the present thesis was to examine psychological, endocrine and genetic aspects of postpartum depression in a large, population-based sample of women in Uppsala, Sweden. All included studies were undertaken as parts of the BASIC-project, a longitudinal study on psychological wellbeing during pregnancy and the postpartum period. Study participants were screened for depressive symptoms in pregnancy week 17 and 32 as well as at six weeks and six months postpartum, mainly by use of the Swedish version of the Edinburgh Postnatal Depression Scale (EPDS). Furthermore, personality was assessed with the Swedish universities Scale of Personality (SSP) in pregnancy week 32. Evening cortisol levels in saliva were measured in pregnancy week 36 and at six weeks postpartum. Blood samples were obtained to measure corticotropin-releasing hormone levels (CRH) and to perform genetic analyses. The results of this thesis demonstrate that neuroticism is a strong and independent predictive factor of depressive symptoms at six weeks and six months postpartum, and has a significant mediatory role in the association between a single nucleotide polymorphism in the hydroxysteroid (11-beta) dehydrogenase 1 gene (HSD11B1) and postpartum depression. Furthermore, women with postpartum depressive symptoms present with a dysregulated hypothalamic-pituitary-adrenal axis activity in terms of elevated cortisol levels postpartum, as well as elevated CRH levels in mid-gestation. In conclusion, this thesis develops current knowledge on several attributes of postpartum depression. Further studies are required to replicate and expand on these results, which would further contribute to early identification of women at risk of postpartum depression and adoption of proper interventions that may moderate the short- and long-term consequences of the disorder.

Page generated in 0.2563 seconds