• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 5
  • 1
  • Tagged with
  • 12
  • 12
  • 6
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Uma heurística GRASP para o problema de dimensionamento de lotes com múltiplas plantas / A GRASP heuristic for the multi-plant lot sizing problem

Nascimento, Mariá Cristina Vasconcelos 28 February 2007 (has links)
O problema de dimensionamento de lotes, objeto desse estudo, considera um ambiente composto por múltiplas plantas independentes, múltiplos itens e múltiplos períodos. O ambiente de produção tem capacidade limitada e as plantas podem produzir os mesmos itens. Cada planta tem uma demanda própria e é permitida a transferência de lotes entre as plantas, o que envolve um certo custo. Este problema tem como caso particular o de dimensionamento de lotes com máquinas paralelas. O objetivo desta dissertação é propor uma heurística baseada na meta-heurística GRASP (Greedy Randomized Adaptive Search Procedures). Além disso, uma estratégia path relinking foi incorporada ao GRASP como uma fase de melhoria do algoritmo. Para verificar a eficiência da heurística proposta, os seus resultados são comparados aos da literatura tanto no caso de máquinas paralelas quanto no de múltiplas plantas. Como resultado, o problema de múltiplas plantas obteve melhores resultados quando comparado aos da heurística da literatura. Com relação ao problema de máquinas paralelas, a heurística proposta se mostrou competitiva / The lot sizing problem, which is the aim of this study, considers an environment consisting of multiple independent plants, multiple items and multiple periods. The production environment has limited capacity and the plants can produce the same items. Each plant has its own demand and the lot transfers between the plants are permitted, which involves a certain cost. This problem has as a particular case the parallel machines lot sizing problem. The objective of this dissertation is to propose a heuristic based on the GRASP (Greedy Randomized Adaptive Search Procedures). Furthermore, a path relinking phase is embedded in the GRASP to obtain better performance. To verify the efficiency of the proposed heuristic, its results were compared with the literature as for the multi-plant as for parallel machines problem. Computational tests showed that the proposed heuristic performed better than other literature heuristic concerning the multiplant problem. Concerning the parallel machines, the heuristic is competitive
2

Uma heurística GRASP para o problema de dimensionamento de lotes com múltiplas plantas / A GRASP heuristic for the multi-plant lot sizing problem

Mariá Cristina Vasconcelos Nascimento 28 February 2007 (has links)
O problema de dimensionamento de lotes, objeto desse estudo, considera um ambiente composto por múltiplas plantas independentes, múltiplos itens e múltiplos períodos. O ambiente de produção tem capacidade limitada e as plantas podem produzir os mesmos itens. Cada planta tem uma demanda própria e é permitida a transferência de lotes entre as plantas, o que envolve um certo custo. Este problema tem como caso particular o de dimensionamento de lotes com máquinas paralelas. O objetivo desta dissertação é propor uma heurística baseada na meta-heurística GRASP (Greedy Randomized Adaptive Search Procedures). Além disso, uma estratégia path relinking foi incorporada ao GRASP como uma fase de melhoria do algoritmo. Para verificar a eficiência da heurística proposta, os seus resultados são comparados aos da literatura tanto no caso de máquinas paralelas quanto no de múltiplas plantas. Como resultado, o problema de múltiplas plantas obteve melhores resultados quando comparado aos da heurística da literatura. Com relação ao problema de máquinas paralelas, a heurística proposta se mostrou competitiva / The lot sizing problem, which is the aim of this study, considers an environment consisting of multiple independent plants, multiple items and multiple periods. The production environment has limited capacity and the plants can produce the same items. Each plant has its own demand and the lot transfers between the plants are permitted, which involves a certain cost. This problem has as a particular case the parallel machines lot sizing problem. The objective of this dissertation is to propose a heuristic based on the GRASP (Greedy Randomized Adaptive Search Procedures). Furthermore, a path relinking phase is embedded in the GRASP to obtain better performance. To verify the efficiency of the proposed heuristic, its results were compared with the literature as for the multi-plant as for parallel machines problem. Computational tests showed that the proposed heuristic performed better than other literature heuristic concerning the multiplant problem. Concerning the parallel machines, the heuristic is competitive
3

Synchronizing vans and cargo bikes in a city distribution network

Anderluh, Alexandra, Hemmelmayr, Vera, Nolz, Pamela 26 June 2017 (has links) (PDF)
One of the significant side-effects of growing urbanization is the constantly increasing amount of freight transportation in cities. This is mainly performed by conventional vans and trucks and causes a variety of problems such as road congestion, noise nuisance and pollution. Yet delivering goods to residents is a necessity. Sustainable concepts of city distribution networks are one way of mitigating difficulties of freight services. In this paper we develop a two-echelon city distribution scheme with temporal and spatial synchronization between cargo bikes and vans. The resulting heuristic is based on a greedy randomized adaptive search procedure with path relinking. In our computational experiments we use artificial data as well as real-world data of the city of Vienna. Furthermore we compare three distribution policies. The results show the costs caused by temporal synchronization and can give companies decision-support in planning a sustainable city distribution concept.
4

Busca tabu aplicada ao problema de roteamento de veiculos com coleta e entrega / A tabu search for the vehicle routing problem with pickup and delivery

Goraieb, Elias 14 October 2005 (has links)
Orientador: Vinicius Amaral Armentano / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-06T12:38:24Z (GMT). No. of bitstreams: 1 Goraieb_Elias_M.pdf: 21259035 bytes, checksum: 5e5d4e69c800350a20727695a2f33647 (MD5) Previous issue date: 2005 / Resumo: Este trabalho aborda o problema de roteamento de veículos com coleta e entrega, visando à minimização do número de veículos utilizado e a distância total percorrida. O pedido de serviço é atendido por um veículo na janela de tempo imposta pelo cliente, e envolve uma coleta na origem que precede a entrega no destino. A capacidade dos veículos é limitada e uma rota tem duração máxima. Um algoritmo de busca tabu é proposto para a resolução deste problema. Diversas estratégias avançadas são incorporadas ao algoritmo, tais como redução de vizinhança, diversificação da busca, e utilização da metodologia path relinking / Abstract: This work considers the vehicle routing problem with pickup and delivery with the objectives of minimizing the fleet size and the total traveI distance. Each service request is served by a vehicle within time windows imposed by the clients, and involves a pickup origin that precedes a delivery destination. The capacity of the vehicle and the total route duration are limited. A tabu search algorithm is proposed to solve this problem. Several advanced strategies are incorporated in the algorithm, such as neighborhood reduction, search diversification, and path relinking / Mestrado / Engenharia de Sistemas / Mestre em Engenharia Elétrica
5

Aplica?a? das t?cnicas Path-relinking e Vocabulary buiding na melhoria de performance do algoritmo mem?tico para o problema do caixeiro viajante assim?trico

Silva Neto, Jo?o Saturnino da 10 July 2009 (has links)
Made available in DSpace on 2014-12-17T15:26:37Z (GMT). No. of bitstreams: 1 JoaoSSN.pdf: 5224762 bytes, checksum: 4021177e0509af10223ad40751ece2f0 (MD5) Previous issue date: 2009-07-10 / The present essay shows strategies of improvement in a well succeded evolutionary metaheuristic to solve the Asymmetric Traveling Salesman Problem. Such steps consist in a Memetic Algorithm projected mainly to this problem. Basically this improvement applied optimizing techniques known as Path-Relinking and Vocabulary Building. Furthermore, this last one has being used in two different ways, in order to evaluate the effects of the improvement on the evolutionary metaheuristic. These methods were implemented in C++ code and the experiments were done under instances at TSPLIB library, being possible to observe that the procedures purposed reached success on the tests done / O presente trabalho prop?e estrat?gias de melhoria em uma bem sucedida metaheur ?stica evolucionaria para a resolu??o do Problema do Caixeiro Viajante Assim?trico. Tal procedimento consiste em um algoritmo mem?tico projetado especificamente para esse problema. Essas melhorias t?m por base a aplica??o de t?cnicas de otimiza??o conhecidas como Path-Relinking e Vocabulary Building, sendo essa ?ltima t?cnica utilizada de dois modos distintos, com o intuito de avaliar os efeitos de melhoria sobre a metaheur?stica evolucion?ria empregada. Os m?todos propostos foram implementados na linguagem de programa??o C++ e os experimentos computacionais foram realizados sobre inst?ncias disponibilizadas na biblioteca TSPLIB, tornando poss?vel observar que os procedimentos propostos alcan?aram ?xito nos testes realizados
6

Combining mathematical programming and enhanced GRASP metaheuristics : an application to semiconductor manufacturing

Deng, Yumin 07 August 2012 (has links)
Planning and scheduling in semiconductor manufacturing is a difficult problem due to long cycle times, a large number of operational steps, diversified product types, and low-volume high-mix customer demand. This research addresses several problems that arise in the semiconductor industry related to front-end wafer fabrication operations and back-end assembly and test operations. The mathematical models built for these problems turn out to be large-scale mixed integer programs and hard to solve with exact methods. The major contribution of this research is to combine mathematical programming with metaheuristics to find high quality solutions within the time limits imposed by the industrial engineers who oversee the fabrication and test facilities. In order to reduce the size of problems that arise in practice, it is common to cluster similar product types into groups that reflect their underlying technology. The first part of the research is aimed at developing a greedy randomized adaptive search procedure (GRASP) coupled with path relinking (PR) to solve the capacitated clustering problem. The model is generic and can be applied in many different situations. The objective is to maximize a similarity measure within each cluster such that the sum of the weights associated with the product types does not exceed the cluster capacity in each case. In phase I, both a heaviest weight edge (HWE) algorithm and a constrained minimum cut (CMC) algorithm are used to select seeds for initializing the clusters. Feasible solutions are obtained with the help of a self-adjusting restricted candidate list. In phase II, three neighborhoods are defined and explored using the following strategies: cyclic neighborhood search, variable neighborhood descent, and randomized variable neighborhood descent (RVND). The best solutions found are stored in an elite pool. In a post-processing step, PR coupled with local search is applied to the pool members to cyclically generate paths between each pair. The elite pool is updated after each iteration and the procedure ends when no further improvement is possible. After grouping the product types into technologies, a new model is presented for production planning in a high volume fab that uses quarterly commitments to define daily target outputs. Rather than relying on due dates and priority rules to schedule lot starts and move work in process through the shop, the objective is to minimize the sum of the deviations between the target outputs and finished goods inventory. The model takes the form of a large-scale linear program that is intractable for planning horizons beyond a few days. Both Lagrangian relaxation and Benders decomposition were investigated but each proved ineffective. As a consequence, a methodology was developed which was more tailored to the problem’s structure. This involved creating weekly subproblems that were myopic but could be solved to optimality within a few minutes, and then postprocessing the results with a decomposition algorithm to fully utilize the excessive machine time. The heart of the post-processor consists of a rescheduling algorithm and a dispatching heuristic. The third part of the research focuses on the combinatorial problem of machinetooling setup and lot assignments for performing back-end operations. A new model and solution methodology are presented aimed at maximizing the weighted throughput of lots undergoing assembly and test, while ensuring that critical lots are given priority. The problem is formulated as a mixed-integer program and solved again with a GRASP that makes use of linear programming. In phase I of the GRASP, machine-tooling combinations are tentatively fixed and lot assignments are made iteratively to arrive at a feasible solution. This process is repeated many times. In phase II, a novel neighborhood search is performed on a subset of good solutions found in phase I. Using a linear programming-Monte Carlo simulation-based algorithm, new machine-tooling combinations are identified within the neighborhood of the solutions carried over, and improvements are sought by optimizing the corresponding lot assignments. / text
7

Métaheuristiques pour l'optimisation quadratique en 0/1 à grande échelle et ses applications

Wang, Yang 11 February 2013 (has links) (PDF)
Cette thése étudie le problème NP-difficile de optimization quadratique en variables binaires (BQO), à savoir le problème de la maximisation d'une fonction quadratique en variables binaires. BQO peut représenter de nombreux problèmes importants de différents domaines et servir de modèle unifié pour un grand nombre de problèmes d'optimisation combinatoire portant sur les graphes. Cette thèse est consacrée au développement d'algorithmes métaheuristiques efficaces pour résoudre le BQO et ses applications. Premièrement, nous proposons algorithmes de "backbone guided" recherche tabou et d'un algorithme mémétique multi-niveaux sur la base de la technique de la fixation de variables. Ces techniques sont toutes deux basées sur l'idée de la réduction du problème afin de mener à bien une exploitation exhaustive d'une petite région de recherche. Ensuite, nous nous concentrons sur des procédés avancés de génération des solutions initiales préférables et développons des algorithmes combinant GRASP avec la recherche tabou et les algorithmes de path-relinking. En outre, nous résolvons des problèmes, y compris le problème de coupe maximum, de clique maximum, de clique maximale de sommets pondérés et la somme coloration minimum, soit en appliquant directement ou avec une légère adaptation de nos algorithmes développés pour BQO, avec l'hypothèse que ces problèmes sont reformulés en BQO. Enfin, nous présentons un algorithme mémétique basé sur la recherche tabou qui s'attaque efficacement au BQO avec contrainte de cardinalité.
8

Uma proposta de solução para problemas de horário educacional utilizando busca dispersa e reconexão por caminhos

Spindler, Morgana 12 February 2010 (has links)
Made available in DSpace on 2015-03-05T14:01:22Z (GMT). No. of bitstreams: 0 Previous issue date: 12 / Bolsa para curso e programa de Pós Graduação / Este trabalho aborda o uso de uma metaheurística populacional para a solução do problema de otimização conhecido, na Pesquisa Operacional, como Programação de Horário de Cursos Baseada em Currículos. O problema de Programação de Horário de Cursos Baseada em Currículos consiste na construção das grades de horário de cursos em instituição de ensino que indicam em quais períodos semanais cada disciplina destes cursos deverá ocorrer, alocando professores e salas e respeitando um conjunto de requisitos organizacionais, pedagógicos e pessoais. Este trabalho apresenta uma formulação matemática para o problema e especifica um algoritmo de solução baseado na técnica metaheurística Busca Dispersa, combinada com o método de Reconexão por Caminhos. Além disso, é apresentado o registro de testes realizados com instâncias de problemas utilizadas na International Timetabling Competition e também em um problema real de uma instituição local de esino superior. / This paper discusses the use of a populational metaheuristic to solve the optimization problem known in Operational Research, as Curriculum Based Timetabling. The Curriculum Based Timetabling problem is the construction of schedule of courses in educational institutions that indicate which weekly times each subject of these courses should occur, allocating rooms and teachers and a respecting a set of organizational, pedagogical and personal requirements. This paper presents a mathematical formulation for the problem and specify a solution algorithm based on the Scatter Search metaheuristic technique, combined with the method Path Relinking. Furthermore, it is present the record of tests with instances of problems used in the International Timetabling Competition and also a real problem of a local institution.
9

Otimização do problema de reconfiguração de sistemas de distribuição de energia elétrica por meio das Meta-Heurísticas Busca Tabu, GRASP e Path Relinking /

Marinho, Max Robert January 2020 (has links)
Orientador: Rubén Augusto Romero Lazaro / Resumo: O problema de reconfiguração de sistemas de distribuição de energia elétrica consiste em encontrar uma configuração radial por meio da permutação do estado das chaves (abertura ou fechamento) dos ramos de um sistema elétrico. O objetivo é de se alcançar a minimização das perdas elétricas. Cada configuração radial só é considerada factível se respeitar certas restrições operacionais como o limite de tensão nas barras e os limites de correntes nos circuitos. O modelo tratado neste trabalho apresenta explosão combinatória e difícil tratabilidade por meio de métodos convencionais de otimização. O problema, computacionalmente falando, é considerado Não-Polinomial Completo (NPC), pois não possui uma resposta em tempo polinomial a partir de uma entrada definida. Neste trabalho são apresentadas três técnicas meta-heurísticas para se tratar o problema de reconfiguração de sistemas de distribuição de energia elétrica, totalmente diferentes entre uma e outra, atuando em conjunto, para somente um nível de demanda, no intuito de se encontrar a topologia ótima, com o objetivo de se minimizar as perdas elétricas ativas. Além disso, propôs-se modificar o paradigma clássico de implementação estático deste tipo de problema para o paradigma de programação dinâmica por meio de árvores com filhos variados a fim de que a estrutura de dados utilizada representasse fielmente um sistema de distribuição de energia elétrica na memória do computador. As meta-heurísticas implementadas foram a Greedy Rand... (Resumo completo, clicar acesso eletrônico abaixo) / Doutor
10

Hybrid Evolutionary Metaheuristics for Multiobjective Decision Support / Métaheuristiques hybrides évolutionnaires pour l'aide à la décision multi-objectifs

Kafafy, Ahmed 24 October 2013 (has links)
La prise de décision est une partie intégrante de notre vie quotidienne où le décideur est confronté à des problèmes composés de plusieurs objectifs habituellement contradictoires. Dans ce travail, nous traitons des problèmes d'optimisation multiobjectif dans des espaces de recherche continus ou discrets. Nous avons développé plusieurs nouveaux algorithmes basés sur les métaheuristiques hybrides évolutionnaires, en particulier sur l'algorithme MOEA/D. Nous avons proposé l'algorithme HEMH qui utilise l'algorithme DM-GRASP pour construire une population initiale de solutions de bonne qualité dispersées le long de l'ensemble des solutions Pareto optimales. Les résultats expérimentaux montrent la supériorité de toutes les variantes hybrides proposées sur les algorithmes originaux MOEA/D et SPEA2. Malgré ces bons résultats, notre approche possède quelques limitations, levées dans une version améliorée de HEMH : HEMH2 et deux autres variantes HEMHde et HEMHpr. Le Adaptive Binary DE inclus dans les HEMH2 et HEMHde a de meilleures capacités d'exploration qui pallient aux capacités de recherche locale contenues dans la HEMH, HEMH2 et HEMHde. Motivés par ces résultats, nous avons proposé un nouvel algorithme baptisé HESSA pour explorer un espace continu de recherche où le processus de recherche est réalisé par différentes stratégies de recherche. Les résultats expérimentaux montrent la supériorité de HESSA à la fois sur MOEA/D et dMOPSO. Tous les algorithmes proposés ont été vérifiés, testé et comparés à certaines méthodes MOEAs. Les résultats expérimentaux montrent que toutes les propositions sont très compétitives et peuvent être considérés comme une alternative fiable / Many real-world decision making problems consist of several conflicting objectives, the solutions of which is called the Pareto-optimal set. Hybrid metaheuristics proved their efficiency in solving these problems. They tend to enhance search capabilities by incorporating different metaheuristics. Thus, we are concerned with developing new hybrid schemes by incorporating different strategies with exploiting the pros and avoiding the drawback of the original ones. First, HEMH is proposed in which the search process includes two phases DMGRASP obtains an initial set of efficient solutions in the 1st phase. Then, greedy randomized path-relinking with local search or reproduction operators explore the non-visited regions. The efficient solutions explored over the search are collected. Second, a comparative study is developed to study the hybridization of different metaheuristics with MOEA/D. The 1st proposal combines adaptive discrete differential Evolution with MOEA/D. The 2nd combines greedy path-relinking with MOEA/D. The 3rd and the 4th proposals combine both of them in MOEA/D. Third, an improved version of HEMH is presented. HEMH2 uses inverse greedy to build its initial population. Then, differential evolution and path-relink improves these solutions by investigating the non-visited regions in the search space. Also, Pareto adaptive epsilon concept controls the archiving process. Motivated by the obtained results, HESSA is proposed to solve continuous problems. It adopts a pool of search strategies, each of which has a specified success ratio. A new offspring is generated using a randomly selected one. Then, the success ratios are adapted according to the success of the generated offspring. The efficient solutions are collected to act as global guides. The proposed algorithms are verified against the state of the art MOEAs using a set of instances from literature. Results indicate that all proposals are competitive and represent viable alternatives

Page generated in 0.0686 seconds