• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 3
  • 1
  • Tagged with
  • 35
  • 35
  • 23
  • 14
  • 14
  • 12
  • 12
  • 12
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Limitations to plant root growth in highly saline and alkaline bauxite residue

Kopittke, Peter Martin Unknown Date (has links)
Revegetation of bauxite residue is hampered by a lack of understanding of the limitations imposed on plant growth in highly saline and alkaline growth mediums. In this study, several of these growth limiting factors were investigated. The toxicity of the hydroxyl ion (OH-) was examined using a solution culture system developed to allow studies at high pH without nutritional limitations. Also using this solution culture system, the effect of the high Na and Mg concentrations of bauxite residue on the Ca nutrition of plants was investigated. As the toxicity of Al at high pH is not known, a study was conducted to examine the rhizotoxicity of aluminate (Al(OH)4-) and polycationic Al at high pH. The ability of plant roots to reduce rhizosphere pH in bauxite residue was also considered. A novel gypsum application method was assessed for its efficiency at improving the Ca status of bauxite residue. Manual adjustment, ion exchange resins and automated titration were examined for their suitability for nutrient solution pH control in alkaline conditions. For short-term studies, it was found that a solution without supply of Cu, Fe, Mn and Zn, and aerated with CO2 depleted air, greatly reduced nutrient precipitation at high pH, thus eliminating nutritional differences between treatments. Manual pH adjustment and the use of ion exchange resins as pH buffers were unsuitable methods of pH control. In contrast, pH control by automated titration had little effect on solution composition while maintaining constant pH. The solution culture system was used to examine OH- toxicity in mungbeans (Vigna radiata (L.) Wilczek cv. Emerald), with root length reduced at a bulk solution pH of 8.5 and greater. The effect of Ca activity ratio (CAR) and pH on Ca uptake by mungbeans and Rhodes grass (Chloris gayana cv. Pioneer) in Na dominated solution cultures and in soil was investigated. Changes in pH in the alkaline range were shown to have no effect on the critical CAR of 0.024 (corresponding to 90 % relative root length) for mungbeans grown in solution culture. Results from soil grown mungbeans confirmed those from solution culture, with a critical CAR of 0.025. A critical CAR of 0.034 was also established for soil grown Rhodes grass. However, using dilute nutrient solutions dominated by Mg at pH 9.0, root growth was found to be more limited than had been observed for Na solutions, with growth reduced beneath a critical CAR of 0.050. Using a CAR equation modified with plasma membrane binding constants (to incorporate the differing antagonistic effects of Mg and Na), new critical CAR values were calculated for Na (0.56) and Mg (0.44) dominated solutions. This modified CAR equation permits the calculation of CAR irrespective of the dominant salt present. Solubilities of various gypsum sources and size fractions in seawater were studied to investigate the effectiveness of gypsum addition to the residue sand pipeline, rather than as a direct field application. The dissolution rate constant varied with gypsum source (analytical grade (AR) > phosphogypsum (PG) > mined gypsum (MG)) due to reactivity and surface area differences, generally reaching saturation within 15 s (AR) to 30 min (MG > 2.0). The ability of bauxite residue to remove Ca from solution (due to cation exchange and precipitation) was also examined; the quantity of the total solution Ca adsorbed was found to be small (5 %). These low rates of solution Ca adsorption, comparatively rapid dissolution rates, and long pumping times (20 min), preclude the application of gypsum to the residue sand/seawater slurry as a method for residue amelioration. Dilute, alkaline (pH 9.5) nutrient solutions were used to investigate the effects of aluminate (Al(OH)4-) on mungbean root growth. Although root growth in Al(OH)4- solutions was slightly limited, the symptoms associated with this growth reduction were observed to be similar to those caused by the Al13 polycation at concentrations lower than that which can be detected. Also, when roots displaying these symptoms were transferred to fresh Al(OH)4- solutions, no root tip lesions were observed, and root hair growth on the lateral roots improved. Thus, Al(OH)4- is considered to be non-toxic, with the observed reduction in root growth in solutions containing Al(OH)4- due to the gradual formation of toxic Al13 in the bulk nutrient solution resulting from the acidification of the alkaline nutrient solution by the plant roots. The effect of Mn deficiency in Rhodes grass and of legume inoculation in lucerne (Medicago sativa L. cv. Hunter River), on the rhizosphere pH of plants grown in highly alkaline bauxite residue was investigated. In response to Mn deficiency in residue sand, Rhodes grass was observed to increase acidification of its rhizosphere (being up to 1.22 pH units lower than the bulk soil). Due to its ability to fix atmospheric N2 rather than relying on soil N (NO3-) reserves, inoculated lucerne (1.75 pH unit decrease) was also found to acidify its rhizosphere to a greater extent than non-inoculated lucerne (1.16 pH unit decrease).
22

Limitations to plant root growth in highly saline and alkaline bauxite residue

Kopittke, Peter Martin Unknown Date (has links)
Revegetation of bauxite residue is hampered by a lack of understanding of the limitations imposed on plant growth in highly saline and alkaline growth mediums. In this study, several of these growth limiting factors were investigated. The toxicity of the hydroxyl ion (OH-) was examined using a solution culture system developed to allow studies at high pH without nutritional limitations. Also using this solution culture system, the effect of the high Na and Mg concentrations of bauxite residue on the Ca nutrition of plants was investigated. As the toxicity of Al at high pH is not known, a study was conducted to examine the rhizotoxicity of aluminate (Al(OH)4-) and polycationic Al at high pH. The ability of plant roots to reduce rhizosphere pH in bauxite residue was also considered. A novel gypsum application method was assessed for its efficiency at improving the Ca status of bauxite residue. Manual adjustment, ion exchange resins and automated titration were examined for their suitability for nutrient solution pH control in alkaline conditions. For short-term studies, it was found that a solution without supply of Cu, Fe, Mn and Zn, and aerated with CO2 depleted air, greatly reduced nutrient precipitation at high pH, thus eliminating nutritional differences between treatments. Manual pH adjustment and the use of ion exchange resins as pH buffers were unsuitable methods of pH control. In contrast, pH control by automated titration had little effect on solution composition while maintaining constant pH. The solution culture system was used to examine OH- toxicity in mungbeans (Vigna radiata (L.) Wilczek cv. Emerald), with root length reduced at a bulk solution pH of 8.5 and greater. The effect of Ca activity ratio (CAR) and pH on Ca uptake by mungbeans and Rhodes grass (Chloris gayana cv. Pioneer) in Na dominated solution cultures and in soil was investigated. Changes in pH in the alkaline range were shown to have no effect on the critical CAR of 0.024 (corresponding to 90 % relative root length) for mungbeans grown in solution culture. Results from soil grown mungbeans confirmed those from solution culture, with a critical CAR of 0.025. A critical CAR of 0.034 was also established for soil grown Rhodes grass. However, using dilute nutrient solutions dominated by Mg at pH 9.0, root growth was found to be more limited than had been observed for Na solutions, with growth reduced beneath a critical CAR of 0.050. Using a CAR equation modified with plasma membrane binding constants (to incorporate the differing antagonistic effects of Mg and Na), new critical CAR values were calculated for Na (0.56) and Mg (0.44) dominated solutions. This modified CAR equation permits the calculation of CAR irrespective of the dominant salt present. Solubilities of various gypsum sources and size fractions in seawater were studied to investigate the effectiveness of gypsum addition to the residue sand pipeline, rather than as a direct field application. The dissolution rate constant varied with gypsum source (analytical grade (AR) > phosphogypsum (PG) > mined gypsum (MG)) due to reactivity and surface area differences, generally reaching saturation within 15 s (AR) to 30 min (MG > 2.0). The ability of bauxite residue to remove Ca from solution (due to cation exchange and precipitation) was also examined; the quantity of the total solution Ca adsorbed was found to be small (5 %). These low rates of solution Ca adsorption, comparatively rapid dissolution rates, and long pumping times (20 min), preclude the application of gypsum to the residue sand/seawater slurry as a method for residue amelioration. Dilute, alkaline (pH 9.5) nutrient solutions were used to investigate the effects of aluminate (Al(OH)4-) on mungbean root growth. Although root growth in Al(OH)4- solutions was slightly limited, the symptoms associated with this growth reduction were observed to be similar to those caused by the Al13 polycation at concentrations lower than that which can be detected. Also, when roots displaying these symptoms were transferred to fresh Al(OH)4- solutions, no root tip lesions were observed, and root hair growth on the lateral roots improved. Thus, Al(OH)4- is considered to be non-toxic, with the observed reduction in root growth in solutions containing Al(OH)4- due to the gradual formation of toxic Al13 in the bulk nutrient solution resulting from the acidification of the alkaline nutrient solution by the plant roots. The effect of Mn deficiency in Rhodes grass and of legume inoculation in lucerne (Medicago sativa L. cv. Hunter River), on the rhizosphere pH of plants grown in highly alkaline bauxite residue was investigated. In response to Mn deficiency in residue sand, Rhodes grass was observed to increase acidification of its rhizosphere (being up to 1.22 pH units lower than the bulk soil). Due to its ability to fix atmospheric N2 rather than relying on soil N (NO3-) reserves, inoculated lucerne (1.75 pH unit decrease) was also found to acidify its rhizosphere to a greater extent than non-inoculated lucerne (1.16 pH unit decrease).
23

Limitations to plant root growth in highly saline and alkaline bauxite residue

Kopittke, Peter Martin Unknown Date (has links)
Revegetation of bauxite residue is hampered by a lack of understanding of the limitations imposed on plant growth in highly saline and alkaline growth mediums. In this study, several of these growth limiting factors were investigated. The toxicity of the hydroxyl ion (OH-) was examined using a solution culture system developed to allow studies at high pH without nutritional limitations. Also using this solution culture system, the effect of the high Na and Mg concentrations of bauxite residue on the Ca nutrition of plants was investigated. As the toxicity of Al at high pH is not known, a study was conducted to examine the rhizotoxicity of aluminate (Al(OH)4-) and polycationic Al at high pH. The ability of plant roots to reduce rhizosphere pH in bauxite residue was also considered. A novel gypsum application method was assessed for its efficiency at improving the Ca status of bauxite residue. Manual adjustment, ion exchange resins and automated titration were examined for their suitability for nutrient solution pH control in alkaline conditions. For short-term studies, it was found that a solution without supply of Cu, Fe, Mn and Zn, and aerated with CO2 depleted air, greatly reduced nutrient precipitation at high pH, thus eliminating nutritional differences between treatments. Manual pH adjustment and the use of ion exchange resins as pH buffers were unsuitable methods of pH control. In contrast, pH control by automated titration had little effect on solution composition while maintaining constant pH. The solution culture system was used to examine OH- toxicity in mungbeans (Vigna radiata (L.) Wilczek cv. Emerald), with root length reduced at a bulk solution pH of 8.5 and greater. The effect of Ca activity ratio (CAR) and pH on Ca uptake by mungbeans and Rhodes grass (Chloris gayana cv. Pioneer) in Na dominated solution cultures and in soil was investigated. Changes in pH in the alkaline range were shown to have no effect on the critical CAR of 0.024 (corresponding to 90 % relative root length) for mungbeans grown in solution culture. Results from soil grown mungbeans confirmed those from solution culture, with a critical CAR of 0.025. A critical CAR of 0.034 was also established for soil grown Rhodes grass. However, using dilute nutrient solutions dominated by Mg at pH 9.0, root growth was found to be more limited than had been observed for Na solutions, with growth reduced beneath a critical CAR of 0.050. Using a CAR equation modified with plasma membrane binding constants (to incorporate the differing antagonistic effects of Mg and Na), new critical CAR values were calculated for Na (0.56) and Mg (0.44) dominated solutions. This modified CAR equation permits the calculation of CAR irrespective of the dominant salt present. Solubilities of various gypsum sources and size fractions in seawater were studied to investigate the effectiveness of gypsum addition to the residue sand pipeline, rather than as a direct field application. The dissolution rate constant varied with gypsum source (analytical grade (AR) > phosphogypsum (PG) > mined gypsum (MG)) due to reactivity and surface area differences, generally reaching saturation within 15 s (AR) to 30 min (MG > 2.0). The ability of bauxite residue to remove Ca from solution (due to cation exchange and precipitation) was also examined; the quantity of the total solution Ca adsorbed was found to be small (5 %). These low rates of solution Ca adsorption, comparatively rapid dissolution rates, and long pumping times (20 min), preclude the application of gypsum to the residue sand/seawater slurry as a method for residue amelioration. Dilute, alkaline (pH 9.5) nutrient solutions were used to investigate the effects of aluminate (Al(OH)4-) on mungbean root growth. Although root growth in Al(OH)4- solutions was slightly limited, the symptoms associated with this growth reduction were observed to be similar to those caused by the Al13 polycation at concentrations lower than that which can be detected. Also, when roots displaying these symptoms were transferred to fresh Al(OH)4- solutions, no root tip lesions were observed, and root hair growth on the lateral roots improved. Thus, Al(OH)4- is considered to be non-toxic, with the observed reduction in root growth in solutions containing Al(OH)4- due to the gradual formation of toxic Al13 in the bulk nutrient solution resulting from the acidification of the alkaline nutrient solution by the plant roots. The effect of Mn deficiency in Rhodes grass and of legume inoculation in lucerne (Medicago sativa L. cv. Hunter River), on the rhizosphere pH of plants grown in highly alkaline bauxite residue was investigated. In response to Mn deficiency in residue sand, Rhodes grass was observed to increase acidification of its rhizosphere (being up to 1.22 pH units lower than the bulk soil). Due to its ability to fix atmospheric N2 rather than relying on soil N (NO3-) reserves, inoculated lucerne (1.75 pH unit decrease) was also found to acidify its rhizosphere to a greater extent than non-inoculated lucerne (1.16 pH unit decrease).
24

Limitations to plant root growth in highly saline and alkaline bauxite residue

Kopittke, Peter Martin Unknown Date (has links)
Revegetation of bauxite residue is hampered by a lack of understanding of the limitations imposed on plant growth in highly saline and alkaline growth mediums. In this study, several of these growth limiting factors were investigated. The toxicity of the hydroxyl ion (OH-) was examined using a solution culture system developed to allow studies at high pH without nutritional limitations. Also using this solution culture system, the effect of the high Na and Mg concentrations of bauxite residue on the Ca nutrition of plants was investigated. As the toxicity of Al at high pH is not known, a study was conducted to examine the rhizotoxicity of aluminate (Al(OH)4-) and polycationic Al at high pH. The ability of plant roots to reduce rhizosphere pH in bauxite residue was also considered. A novel gypsum application method was assessed for its efficiency at improving the Ca status of bauxite residue. Manual adjustment, ion exchange resins and automated titration were examined for their suitability for nutrient solution pH control in alkaline conditions. For short-term studies, it was found that a solution without supply of Cu, Fe, Mn and Zn, and aerated with CO2 depleted air, greatly reduced nutrient precipitation at high pH, thus eliminating nutritional differences between treatments. Manual pH adjustment and the use of ion exchange resins as pH buffers were unsuitable methods of pH control. In contrast, pH control by automated titration had little effect on solution composition while maintaining constant pH. The solution culture system was used to examine OH- toxicity in mungbeans (Vigna radiata (L.) Wilczek cv. Emerald), with root length reduced at a bulk solution pH of 8.5 and greater. The effect of Ca activity ratio (CAR) and pH on Ca uptake by mungbeans and Rhodes grass (Chloris gayana cv. Pioneer) in Na dominated solution cultures and in soil was investigated. Changes in pH in the alkaline range were shown to have no effect on the critical CAR of 0.024 (corresponding to 90 % relative root length) for mungbeans grown in solution culture. Results from soil grown mungbeans confirmed those from solution culture, with a critical CAR of 0.025. A critical CAR of 0.034 was also established for soil grown Rhodes grass. However, using dilute nutrient solutions dominated by Mg at pH 9.0, root growth was found to be more limited than had been observed for Na solutions, with growth reduced beneath a critical CAR of 0.050. Using a CAR equation modified with plasma membrane binding constants (to incorporate the differing antagonistic effects of Mg and Na), new critical CAR values were calculated for Na (0.56) and Mg (0.44) dominated solutions. This modified CAR equation permits the calculation of CAR irrespective of the dominant salt present. Solubilities of various gypsum sources and size fractions in seawater were studied to investigate the effectiveness of gypsum addition to the residue sand pipeline, rather than as a direct field application. The dissolution rate constant varied with gypsum source (analytical grade (AR) > phosphogypsum (PG) > mined gypsum (MG)) due to reactivity and surface area differences, generally reaching saturation within 15 s (AR) to 30 min (MG > 2.0). The ability of bauxite residue to remove Ca from solution (due to cation exchange and precipitation) was also examined; the quantity of the total solution Ca adsorbed was found to be small (5 %). These low rates of solution Ca adsorption, comparatively rapid dissolution rates, and long pumping times (20 min), preclude the application of gypsum to the residue sand/seawater slurry as a method for residue amelioration. Dilute, alkaline (pH 9.5) nutrient solutions were used to investigate the effects of aluminate (Al(OH)4-) on mungbean root growth. Although root growth in Al(OH)4- solutions was slightly limited, the symptoms associated with this growth reduction were observed to be similar to those caused by the Al13 polycation at concentrations lower than that which can be detected. Also, when roots displaying these symptoms were transferred to fresh Al(OH)4- solutions, no root tip lesions were observed, and root hair growth on the lateral roots improved. Thus, Al(OH)4- is considered to be non-toxic, with the observed reduction in root growth in solutions containing Al(OH)4- due to the gradual formation of toxic Al13 in the bulk nutrient solution resulting from the acidification of the alkaline nutrient solution by the plant roots. The effect of Mn deficiency in Rhodes grass and of legume inoculation in lucerne (Medicago sativa L. cv. Hunter River), on the rhizosphere pH of plants grown in highly alkaline bauxite residue was investigated. In response to Mn deficiency in residue sand, Rhodes grass was observed to increase acidification of its rhizosphere (being up to 1.22 pH units lower than the bulk soil). Due to its ability to fix atmospheric N2 rather than relying on soil N (NO3-) reserves, inoculated lucerne (1.75 pH unit decrease) was also found to acidify its rhizosphere to a greater extent than non-inoculated lucerne (1.16 pH unit decrease).
25

Limitations to plant root growth in highly saline and alkaline bauxite residue

Kopittke, Peter Martin Unknown Date (has links)
Revegetation of bauxite residue is hampered by a lack of understanding of the limitations imposed on plant growth in highly saline and alkaline growth mediums. In this study, several of these growth limiting factors were investigated. The toxicity of the hydroxyl ion (OH-) was examined using a solution culture system developed to allow studies at high pH without nutritional limitations. Also using this solution culture system, the effect of the high Na and Mg concentrations of bauxite residue on the Ca nutrition of plants was investigated. As the toxicity of Al at high pH is not known, a study was conducted to examine the rhizotoxicity of aluminate (Al(OH)4-) and polycationic Al at high pH. The ability of plant roots to reduce rhizosphere pH in bauxite residue was also considered. A novel gypsum application method was assessed for its efficiency at improving the Ca status of bauxite residue. Manual adjustment, ion exchange resins and automated titration were examined for their suitability for nutrient solution pH control in alkaline conditions. For short-term studies, it was found that a solution without supply of Cu, Fe, Mn and Zn, and aerated with CO2 depleted air, greatly reduced nutrient precipitation at high pH, thus eliminating nutritional differences between treatments. Manual pH adjustment and the use of ion exchange resins as pH buffers were unsuitable methods of pH control. In contrast, pH control by automated titration had little effect on solution composition while maintaining constant pH. The solution culture system was used to examine OH- toxicity in mungbeans (Vigna radiata (L.) Wilczek cv. Emerald), with root length reduced at a bulk solution pH of 8.5 and greater. The effect of Ca activity ratio (CAR) and pH on Ca uptake by mungbeans and Rhodes grass (Chloris gayana cv. Pioneer) in Na dominated solution cultures and in soil was investigated. Changes in pH in the alkaline range were shown to have no effect on the critical CAR of 0.024 (corresponding to 90 % relative root length) for mungbeans grown in solution culture. Results from soil grown mungbeans confirmed those from solution culture, with a critical CAR of 0.025. A critical CAR of 0.034 was also established for soil grown Rhodes grass. However, using dilute nutrient solutions dominated by Mg at pH 9.0, root growth was found to be more limited than had been observed for Na solutions, with growth reduced beneath a critical CAR of 0.050. Using a CAR equation modified with plasma membrane binding constants (to incorporate the differing antagonistic effects of Mg and Na), new critical CAR values were calculated for Na (0.56) and Mg (0.44) dominated solutions. This modified CAR equation permits the calculation of CAR irrespective of the dominant salt present. Solubilities of various gypsum sources and size fractions in seawater were studied to investigate the effectiveness of gypsum addition to the residue sand pipeline, rather than as a direct field application. The dissolution rate constant varied with gypsum source (analytical grade (AR) > phosphogypsum (PG) > mined gypsum (MG)) due to reactivity and surface area differences, generally reaching saturation within 15 s (AR) to 30 min (MG > 2.0). The ability of bauxite residue to remove Ca from solution (due to cation exchange and precipitation) was also examined; the quantity of the total solution Ca adsorbed was found to be small (5 %). These low rates of solution Ca adsorption, comparatively rapid dissolution rates, and long pumping times (20 min), preclude the application of gypsum to the residue sand/seawater slurry as a method for residue amelioration. Dilute, alkaline (pH 9.5) nutrient solutions were used to investigate the effects of aluminate (Al(OH)4-) on mungbean root growth. Although root growth in Al(OH)4- solutions was slightly limited, the symptoms associated with this growth reduction were observed to be similar to those caused by the Al13 polycation at concentrations lower than that which can be detected. Also, when roots displaying these symptoms were transferred to fresh Al(OH)4- solutions, no root tip lesions were observed, and root hair growth on the lateral roots improved. Thus, Al(OH)4- is considered to be non-toxic, with the observed reduction in root growth in solutions containing Al(OH)4- due to the gradual formation of toxic Al13 in the bulk nutrient solution resulting from the acidification of the alkaline nutrient solution by the plant roots. The effect of Mn deficiency in Rhodes grass and of legume inoculation in lucerne (Medicago sativa L. cv. Hunter River), on the rhizosphere pH of plants grown in highly alkaline bauxite residue was investigated. In response to Mn deficiency in residue sand, Rhodes grass was observed to increase acidification of its rhizosphere (being up to 1.22 pH units lower than the bulk soil). Due to its ability to fix atmospheric N2 rather than relying on soil N (NO3-) reserves, inoculated lucerne (1.75 pH unit decrease) was also found to acidify its rhizosphere to a greater extent than non-inoculated lucerne (1.16 pH unit decrease).
26

Limitations to plant root growth in highly saline and alkaline bauxite residue

Kopittke, Peter Martin Unknown Date (has links)
Revegetation of bauxite residue is hampered by a lack of understanding of the limitations imposed on plant growth in highly saline and alkaline growth mediums. In this study, several of these growth limiting factors were investigated. The toxicity of the hydroxyl ion (OH-) was examined using a solution culture system developed to allow studies at high pH without nutritional limitations. Also using this solution culture system, the effect of the high Na and Mg concentrations of bauxite residue on the Ca nutrition of plants was investigated. As the toxicity of Al at high pH is not known, a study was conducted to examine the rhizotoxicity of aluminate (Al(OH)4-) and polycationic Al at high pH. The ability of plant roots to reduce rhizosphere pH in bauxite residue was also considered. A novel gypsum application method was assessed for its efficiency at improving the Ca status of bauxite residue. Manual adjustment, ion exchange resins and automated titration were examined for their suitability for nutrient solution pH control in alkaline conditions. For short-term studies, it was found that a solution without supply of Cu, Fe, Mn and Zn, and aerated with CO2 depleted air, greatly reduced nutrient precipitation at high pH, thus eliminating nutritional differences between treatments. Manual pH adjustment and the use of ion exchange resins as pH buffers were unsuitable methods of pH control. In contrast, pH control by automated titration had little effect on solution composition while maintaining constant pH. The solution culture system was used to examine OH- toxicity in mungbeans (Vigna radiata (L.) Wilczek cv. Emerald), with root length reduced at a bulk solution pH of 8.5 and greater. The effect of Ca activity ratio (CAR) and pH on Ca uptake by mungbeans and Rhodes grass (Chloris gayana cv. Pioneer) in Na dominated solution cultures and in soil was investigated. Changes in pH in the alkaline range were shown to have no effect on the critical CAR of 0.024 (corresponding to 90 % relative root length) for mungbeans grown in solution culture. Results from soil grown mungbeans confirmed those from solution culture, with a critical CAR of 0.025. A critical CAR of 0.034 was also established for soil grown Rhodes grass. However, using dilute nutrient solutions dominated by Mg at pH 9.0, root growth was found to be more limited than had been observed for Na solutions, with growth reduced beneath a critical CAR of 0.050. Using a CAR equation modified with plasma membrane binding constants (to incorporate the differing antagonistic effects of Mg and Na), new critical CAR values were calculated for Na (0.56) and Mg (0.44) dominated solutions. This modified CAR equation permits the calculation of CAR irrespective of the dominant salt present. Solubilities of various gypsum sources and size fractions in seawater were studied to investigate the effectiveness of gypsum addition to the residue sand pipeline, rather than as a direct field application. The dissolution rate constant varied with gypsum source (analytical grade (AR) > phosphogypsum (PG) > mined gypsum (MG)) due to reactivity and surface area differences, generally reaching saturation within 15 s (AR) to 30 min (MG > 2.0). The ability of bauxite residue to remove Ca from solution (due to cation exchange and precipitation) was also examined; the quantity of the total solution Ca adsorbed was found to be small (5 %). These low rates of solution Ca adsorption, comparatively rapid dissolution rates, and long pumping times (20 min), preclude the application of gypsum to the residue sand/seawater slurry as a method for residue amelioration. Dilute, alkaline (pH 9.5) nutrient solutions were used to investigate the effects of aluminate (Al(OH)4-) on mungbean root growth. Although root growth in Al(OH)4- solutions was slightly limited, the symptoms associated with this growth reduction were observed to be similar to those caused by the Al13 polycation at concentrations lower than that which can be detected. Also, when roots displaying these symptoms were transferred to fresh Al(OH)4- solutions, no root tip lesions were observed, and root hair growth on the lateral roots improved. Thus, Al(OH)4- is considered to be non-toxic, with the observed reduction in root growth in solutions containing Al(OH)4- due to the gradual formation of toxic Al13 in the bulk nutrient solution resulting from the acidification of the alkaline nutrient solution by the plant roots. The effect of Mn deficiency in Rhodes grass and of legume inoculation in lucerne (Medicago sativa L. cv. Hunter River), on the rhizosphere pH of plants grown in highly alkaline bauxite residue was investigated. In response to Mn deficiency in residue sand, Rhodes grass was observed to increase acidification of its rhizosphere (being up to 1.22 pH units lower than the bulk soil). Due to its ability to fix atmospheric N2 rather than relying on soil N (NO3-) reserves, inoculated lucerne (1.75 pH unit decrease) was also found to acidify its rhizosphere to a greater extent than non-inoculated lucerne (1.16 pH unit decrease).
27

Limitations to plant root growth in highly saline and alkaline bauxite residue

Kopittke, Peter Martin Unknown Date (has links)
Revegetation of bauxite residue is hampered by a lack of understanding of the limitations imposed on plant growth in highly saline and alkaline growth mediums. In this study, several of these growth limiting factors were investigated. The toxicity of the hydroxyl ion (OH-) was examined using a solution culture system developed to allow studies at high pH without nutritional limitations. Also using this solution culture system, the effect of the high Na and Mg concentrations of bauxite residue on the Ca nutrition of plants was investigated. As the toxicity of Al at high pH is not known, a study was conducted to examine the rhizotoxicity of aluminate (Al(OH)4-) and polycationic Al at high pH. The ability of plant roots to reduce rhizosphere pH in bauxite residue was also considered. A novel gypsum application method was assessed for its efficiency at improving the Ca status of bauxite residue. Manual adjustment, ion exchange resins and automated titration were examined for their suitability for nutrient solution pH control in alkaline conditions. For short-term studies, it was found that a solution without supply of Cu, Fe, Mn and Zn, and aerated with CO2 depleted air, greatly reduced nutrient precipitation at high pH, thus eliminating nutritional differences between treatments. Manual pH adjustment and the use of ion exchange resins as pH buffers were unsuitable methods of pH control. In contrast, pH control by automated titration had little effect on solution composition while maintaining constant pH. The solution culture system was used to examine OH- toxicity in mungbeans (Vigna radiata (L.) Wilczek cv. Emerald), with root length reduced at a bulk solution pH of 8.5 and greater. The effect of Ca activity ratio (CAR) and pH on Ca uptake by mungbeans and Rhodes grass (Chloris gayana cv. Pioneer) in Na dominated solution cultures and in soil was investigated. Changes in pH in the alkaline range were shown to have no effect on the critical CAR of 0.024 (corresponding to 90 % relative root length) for mungbeans grown in solution culture. Results from soil grown mungbeans confirmed those from solution culture, with a critical CAR of 0.025. A critical CAR of 0.034 was also established for soil grown Rhodes grass. However, using dilute nutrient solutions dominated by Mg at pH 9.0, root growth was found to be more limited than had been observed for Na solutions, with growth reduced beneath a critical CAR of 0.050. Using a CAR equation modified with plasma membrane binding constants (to incorporate the differing antagonistic effects of Mg and Na), new critical CAR values were calculated for Na (0.56) and Mg (0.44) dominated solutions. This modified CAR equation permits the calculation of CAR irrespective of the dominant salt present. Solubilities of various gypsum sources and size fractions in seawater were studied to investigate the effectiveness of gypsum addition to the residue sand pipeline, rather than as a direct field application. The dissolution rate constant varied with gypsum source (analytical grade (AR) > phosphogypsum (PG) > mined gypsum (MG)) due to reactivity and surface area differences, generally reaching saturation within 15 s (AR) to 30 min (MG > 2.0). The ability of bauxite residue to remove Ca from solution (due to cation exchange and precipitation) was also examined; the quantity of the total solution Ca adsorbed was found to be small (5 %). These low rates of solution Ca adsorption, comparatively rapid dissolution rates, and long pumping times (20 min), preclude the application of gypsum to the residue sand/seawater slurry as a method for residue amelioration. Dilute, alkaline (pH 9.5) nutrient solutions were used to investigate the effects of aluminate (Al(OH)4-) on mungbean root growth. Although root growth in Al(OH)4- solutions was slightly limited, the symptoms associated with this growth reduction were observed to be similar to those caused by the Al13 polycation at concentrations lower than that which can be detected. Also, when roots displaying these symptoms were transferred to fresh Al(OH)4- solutions, no root tip lesions were observed, and root hair growth on the lateral roots improved. Thus, Al(OH)4- is considered to be non-toxic, with the observed reduction in root growth in solutions containing Al(OH)4- due to the gradual formation of toxic Al13 in the bulk nutrient solution resulting from the acidification of the alkaline nutrient solution by the plant roots. The effect of Mn deficiency in Rhodes grass and of legume inoculation in lucerne (Medicago sativa L. cv. Hunter River), on the rhizosphere pH of plants grown in highly alkaline bauxite residue was investigated. In response to Mn deficiency in residue sand, Rhodes grass was observed to increase acidification of its rhizosphere (being up to 1.22 pH units lower than the bulk soil). Due to its ability to fix atmospheric N2 rather than relying on soil N (NO3-) reserves, inoculated lucerne (1.75 pH unit decrease) was also found to acidify its rhizosphere to a greater extent than non-inoculated lucerne (1.16 pH unit decrease).
28

An eco-tourism and conservation perspective of endangered Proteaceae of the Cape Floral Kingdom on the Agulhas Plain

Laubscher, Charles Petrus January 2009 (has links)
Thesis (DTech (Tourism and Hospitality Management))--Cape Peninsula University of Technology, 2009 / The growing global perspective on conservation in combination with the rapid changes in the environment due to ever increasing human demands has placed more emphasis on the plight of threatened and endangered Proteaceae on the Agulhas Plain. Large parts of the Agulhas Plain contribute to the commercial cut flower export industry. The population numbers of Leucadendron elimense subsp. elimense, L. laxum, L. platyspermum and L. stelligerum (PROTEACEAE) have been drastically reduced as many species are illegally harvested. The continued destruction of natural habitats has made environmentalists and Protea flower producers aware of the need for developing future conservation strategies. An increase in ecotourism on the Agulhas Plain is important in view of its role in extended conservation and job creation. The Agulhas Plain is a region where conservation, ecotourism and agriculture could work together to maintain a balance of protection, enjoyment and commercial gain from the habitat. Potential developments of ecotourism on the Agulhas Plain are hindered through poor agricultural practices and a lack of conservation of the natural habitat. Landowners and cut flower producers have to stay abreast of global changes if they are to be responsible for the protection of the environment. In this respect the usage of land is linked to skills, attitudes, knowledge and an understanding of the environment. There is a lack of guidance and available information in the conservation of the Agulhas Plain while the ecotourism potential of the Cape Floral Kingdom remains undeveloped. The objectives of the study are: a) to collect and survey scientific data on current practices of landowners, flower producers and exporters to determine the probable causes of destruction of Red Data species and their influences on ecotourism development on the Agulhas Plain. This study aims to make recommendations on the propagation and the conservation of threatened species and the ecotourism potential on the Agulhas Plain; b) to test the rooting ability of L. laxum using four liquid hormone concentrations of IBA or IAA and four different rooting mediums. Differences in rooting in an environmentally controlled greenhouse environment with bottom heat and a shaded tunnel is also tested. The study aims to develop new propagation techniques to increase successful and economical propagation of the species, to solve problematic and difficult propagation techniques and to relieve the threatened status of species. The study used a self-administered survey questionnaire distributed amongst growers, farmers and exporters to determine the knowledge, skills, values and attitudes in the harvesting, propagation, conservation and ecotourism development of Red Data species on the Agulhas Plain.
29

The Utility of Linear Riparian Rainforest for Vertebrates on the Atherton and Evelyn Tablelands, North Queensland

Hausmann, Franziska, n/a January 2004 (has links)
This study investigated the utility to vertebrates of upland linear riparian rainforest fragments on the Atherton and Evelyn Tablelands in the Australian Wet Tropics region, north Queensland. Similar linear fragments were selected, that varied in forest age and their connectivity to large areas of continuous forest:- (connected primary (N=6), isolated primary (N=5), connected secondary (N=6) and isolated secondary (N=7)). Primary sites had either never been cleared or only subject to selective logging, while secondary forest had been completely cleared and allowed to regenerate for at least 30 years. These linear fragments were contrasted with riparian sites within continuous forest sites (N=6 to 7), which were situated in State Forest or National Parks, and sites within the cleared matrix (pasture, N=6). Vertebrates surveyed were birds, ground-dwelling mammals and reptiles, particularly leaf-litter skinks. All surveys were conducted between September and December in 2001 and/or 2000. Chapter 2 investigates the effects of forest age, isolation and structural vegetation features on bird assemblages within linear riparian fragments of rainforest. Bird surveys and structural vegetation assessments were conducted within connected and isolated primary and secondary linear fragments, and compared with those of continuous forest habitat (N=6) and pasture. There were strong effects of forest age; all three types of primary rainforest had higher values than secondary rainforest for most measured attributes of vegetation structure (including canopy height and cover; and frequency of large-diameter trees, lianes, epiphytes, strangler figs; and woody debris), but lower frequencies of tree ferns and thorny scramblers. Sites within primary rainforest also had a greater frequency of many bird species across different guilds of habitat, feeding and movement. Assemblages of rainforest-dependent birds showed an effect of isolation, although its strength was less than that of forest age. Isolated fragments of primary rainforest differed significantly from continuous primary rainforest in their rainforest-dependent bird species assemblages (and had lower species richness), and isolated fragments of secondary rainforest differed from those that were connected. There was a significant association between the species composition of rainforest birds and some measured vegetation parameters across all sites, but not within primary or secondary sites. Vegetation differences did not explain the lowered frequency of several species in isolated fragments. Limited dispersal seems unlikely to be a main cause, and causal processes probably vary among species. Specialist rainforest species endemic to the Wet Tropics region showed stronger responses to present-day rainforest age and fragmentation than those not endemic. Variation in nest depredation levels associated with rainforest fragmentation (edge effects) is examined in Chapter 3. Artificial nests were placed in the forest understorey at seven edge sites where continuous forest adjoined pasture, seven interiors (about one kilometre from the edge), and six primary linear riparian forest remnants (50-100 m wide) that were connected to continuous forest. Four nest types were compared, representing different combinations of two factors; height (ground, shrub) and shape (open, domed). At each site, four nests of each type, containing one quail egg and two model plasticine eggs, were interspersed about 15 m apart within a 160 m transect. Predators were identified from marks on the plasticine eggs. The overall depredation rate was 66.5% of 320 nests' contents damaged over a three-day period. Large rodents, especially the rat Uromys caudimaculatus, and birds, especially the spotted catbird Ailuroedus melanotis, were the main predators. Mammals comprised 56.5% and birds 31.0% of identified predators, with 12.5% of unknown identity. The depredation rate did not vary among site-types, or between open and domed nests, and there were no statistically significant interactions. Nest height strongly affected depredation rates by particular types of predator; depredation rates by mammals were highest at ground nests, whereas attacks by birds were most frequent at shrub nests. These effects counterbalanced so that overall there was little net effect of nest height. Mammals accounted for 78.4% of depredated ground nests and birds for at least 47.4% of shrub nests (and possibly up to 70.1%). The main predators were species characteristic of rainforest, rather than habitat generalists, open-country or edge specialists. For birds that nest in the tropical rainforest understorey of the study region, it is unlikely that edges and linear remnants presently function as ecological population sinks due to mortality associated with increased nest depredation. The use of linear riparian remnants by small ground-dwelling mammals and reptiles (mainly leaf litter skinks), is reported in Chapter 4. Site types were continuous rainforest, connected and isolated linear fragments of both uncleared primary rainforest and secondary regrowth rainforest. Mammals were also surveyed in pasture sites. Neither reptile species richness nor abundance varied significantly among site types. Although mammal species richness varied significantly between site types, with isolated primary sites containing highest species richness, overall mammal abundance did not differ significantly among site types. Pasture sites differed significantly from all rainforest sites in their mammal species composition, and were dominated by the introduced house mouse (Mus musculus). This species was absent from all rainforest sites, which were characterised by moderate abundances of bush rat/Cape York rat Rattus fuscipes/leucopus, fawn-footed melomys Melomys cervinipes and giant white-tailed rat Uromys caudimaculatus. None of these species varied significantly in abundance among site types, although the giant white-tailed rat showed a trend (P=0.09) for reduced abundance in isolated secondary sites. A single reptile species, the prickly forest skink Gnypetoscincus queenslandiae, occurred in sufficient numbers for individual analysis, and its abundance varied significantly among the forested site types, being less abundant in all linear fragments than in continuous forest sites. The utility of linear riparian rainforest for vertebrates appears to be species-specific and involves many factors. However, overall, species endemic to the Wet Tropics (which are hence of the highest conservation significance) appear to be the most sensitive to fragmentation. These species were most likely to show altered abundances or frequencies of occurrence due to isolation, forest age, and habitat linearity. The ecology of species within this group warrants further investigation within fragmented and non-fragmented regions of the Tablelands. For many other vertebrates examined in this study, there appears to be sufficient functional connectedness between remnants on the Tablelands to minimise the effects of fragmentation. Nevertheless, the lower density of many of these species in pasture may indicate that their long-term persistence within the fragmented rainforest areas could benefit from the maintenance or establishment of habitat linkages. Certainly, if the current rainforest vegetation cover were further reduced, or if the land use in the matrix became more intensive, the establishment of specific habitat linkages could become more important as existing dispersal routes could be lost. It also appears that nest depredation levels are unlikely to limit the value of linear rainforest remnants and other small rainforest remnants as breeding habitat for birds (at least for understorey-nesting species), relative to more intact rainforest, in the study region.
30

Renosterveld restoration : the role of competition, herbivory and other disturbances

Midoko-Iponga, Donald 12 1900 (has links)
Thesis (MSc)--University of Stellenbosch, 2004. / ENGLISH ABSTRACT: West Coast Renosterveld is one of the most threatened vegetation types in South Africa. Less than 5% of the original extent of this vegetation type remains, of which 80% is on private land. In addition to fragmentation, much of the vegetation has been ploughed for crop production and then abandoned and invaded by alien plants. Restoration of transformed areas may improve the conservation status of this vegetation type. Indigenous species do not return to abandoned agricultural fields for decades even if these are adjacent to natural areas since their return is limited either by seed dispersal or seedling establishment. The aim of this study was to examine the recovery of indigenous vegetation on abandoned fields. Renosterveld, as we know it today, is an asteraceous shrubland, dominated mainly by renosterbos (Eytropappus rhinocerotis), but might have been a grassland or a grassland-shrubland mosaic. Historical records indicate that species of large game were common in the Western Cape when the early settlers arrived, but most of these have since disappeared. It is thus impossible to reconstruct exactly the ecological processes and functioning of Renosterveld. The first part of the study was designed to examine the effects of grass competition, grazing by indigenous large herbivores, and interaction of these two factors on the establishment, growth and survival of transplanted Renosterveld seedlings on an abandoned agricultural field. Experimental transplanting of indigenous shrubs into an old field showed that most of the plants investigated competed for resources with lawn grasses on the field, and competition affected the seedlings throughout the experiment. Mortality was higher, and growth was reduced for seedlings exposed to grass competition. With the exception of wild olive (Olea europaea spp.africana), herbivory alone had no significant impact on the target species. Herbivory was at a low intensity (20 ha/large animal unit); higher grazing pressures might have given different results. No interaction between competition and herbivory was found for the species investigated; competition and grazing therefore seem to influence the seedlings independently. The second part of this study was conducted to examine the effects of different management strategies, viz: brush cutting, burning and herbicide application on plant species recruitment and community composition and to ascertain their applicability by farmers for large scale restoration of Renosterveld. My comparison of the different strategies for controlling annual alien grasses indicated that these did not differ significantly in their effects on species richness. Burning reduced shrub cover and increased overall species richness and diversity. Burning also reduced grass biomass, and increased recruitment of indigenous seedlings. The use of herbicide resolved the problem of grass biomass invasion and increased shrub species richness. The herbicide application did not appear to have long-term negative effects on the soil quality. Brush cutting did not remove grass biomass on the old field. Experimental re-seeding with an indigenous grass and shrub species into treated plots resulted in low recruitment. My conclusion is that grass can reduce recruitment and growth of many indigenous shrub species. My recommendation for the restoration of old fields in West Coast Renosterveld is to apply herbicide to remove grass competition, and then, after the herbicide has degraded, to oversow the field with seeds of indigenous shrub and grass species of early successional stages to increase overall species diversity. / AFRIKAANSE OPSOMMING: Weskus Renosterveld is een van die mees bedreigde plantegroei soorte in Suid Afrika. Minder as 5% van die oorspronklike omvang van hierdie plantegroei tipe is oor, en dit hoofsaaklik (80%) op privaatlande. Saam met fragmentasie, is baie Renosterveld areas ook omgeploeg vir boerdery en dan net so gelos, met die gevolg dat uitheemse plante hierdie areas ingedring het. Restorasie of herstelling van sulke bewerkte lande kan dalk die bewaringsstatus van hierdie plantegroei tipe verbeter. Natuurlike vestiging van Renosterveld spesies op sulke ou bewerkte lande gebeur nie, selfs al is daar Renosterveld direk langs so ‘n ou veld. Die hervestiging van inheemse spesies is dus tot saadverspreiding or saailingbevestiging beperk. Die doel van hierdie studie is om die stadige terugkoms van inheemse plantegroei na verlate bewerkte velde te verduidelik. Renosterveld is ‘n struikveld waarin die renosterbos (Eytropappus rhinocerotis) domineer, maar kan ook ‘n grasveld of ‘n grasveld-struikland mengsel wees. Groot herbivore was algemeen in die Wes Kaap toe die eerste settelaars gearriveer het, maar intussen het omtrent al die groot wild spesies verdwyn. Dit is dus ontmoontlik om die ekologiese prosesse en funksionering van Renosterveld presies so te herstel. Die eerste deel van hierdie studie bestudeer die effek van graskompetisie, weiding deur inheemse groot herbivore, en die interaksie tussen hierdie twee faktore op die vestiging, groei en oorlewing van oorgeplante Renosterveld saailinge in ‘n verlate ou veld. Die eksperimentele oorplanting van inheemse struike in ‘n ou land het gewys dat die meeste van hierdie plante kompeteer vir hulpbronne met kweekgras wat op die ou veld groei. Kompetisie het die saailinge deur die hele eksperiment geaffekteer. ‘n Hoër mortaliteit en verminderede groei in saailinge wat aan gras kompetisie blootgestel was, is waargeneem. Met die uitsondering van Olea europaea spp. africana, het herbivorie alleen geen betekenisvolle impak op plant spesies gehad nie. Weidingsdruk was laag (20 ha/groot vee eenheid); ‘n groter weidingsdruk sou miskien ‘n ander uitkoms gehad het. Geen interaksie tussen kompetisie en herbivorie is waargeneem in die bestudeerde plantspesies nie. Dit wil dus voorkom of kompetisie en weiding die saailinge onafhanklik van mekaar beïnvloed. Die tweede deel van hierdie studie was onderneem om die effek van verskillende behandelings (kontrole, sny, brand en herbisied toediening) op plantspesie vestiging en samestelling te bestudeer asook om bestuurmetodes te toets was deur boere op groot skaal gebruik kan word om Renosterveld te herstel. In ‘n vergelyking van verskillende bestuur metodes (kontrole, besnoeiing, brand en herbisied) om eenjarige uitheemse gras te beheer, is gewys dat die behandlings nie betekenisvol van mekaar verskil in hulle effek op spesierykheid nie. Vuur het struikbedekking verminder en totale spesies rykheid en diversitiet verhoog. Die gebruik van ‘n herbisied het die probleem van grasindringing opgelos en het ook struikspesiesrykheid verhoog. Die herbisied het nie lang termyn negatiewe effekte op grond kwaliteit gehad nie. Sny het nie gras biomassa verlaag op die ou land nie. Eksperimentele plant van inheemse grasse en struike in die behandelde areas, het lae vestiging tot gevolg gehad. My algemene afleiding is dus dat gras die hervestinging en groei van baie inheemse struikspesies verminder. Ek stel voor dat herbisied gebruik moet word om gras kompetisie te verminder. Nadat herbisied residue in die grond afgebreek is, moet die ou land met inheemse struik en grasspesies, wat in vroeë suksessie stadiums is, beplant word om sodoende totale spesiediversiteit te verhoog en uiteindelik ou bewerkte lande in Weskus Renosterveld te herstel.

Page generated in 0.0908 seconds