Spelling suggestions: "subject:"renal.""
1 |
The quantitation and significance of renin in biological fluidsLumbers, E. R. January 1969 (has links)
154 leaves : / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (M.D.)--University of Adelaide, 1970
|
2 |
The mechanism of activation of renin in human amniotic fluid.Morris, Brian James. January 1971 (has links) (PDF)
Thesis (B.Sc. Hons.) from the Dept. of Human Physiology and Pharmacology, and the Dept. of Zoology, University of Adelaide, 1971.
|
3 |
The quantitation and significance of renin in biological fluids.Lumbers, Eugenie Ruth. January 1969 (has links) (PDF)
Thesis (M.D.) -- University of Adelaide, 1970.
|
4 |
Plasmareninaktivität bei Patienten mit Hochdruckkrankheit Untersuchungen zum Mechanismus der Reninsekretion /Zwick, Peter, January 1979 (has links)
Thesis (doctoral)--Ludwig Maximilians-Universität zu München, 1979.
|
5 |
A rapid, simple method for the assay of renin in rabbit plasmaRyan, James Walter January 1967 (has links)
No description available.
|
6 |
High-Glucose-Induced Regulation of Intracellular ANG II Synthesis and Nuclear Redistribution in Cardiac MyocytesSingh, Vivek P., Le, Bao, Bhat, Vadiraja B., Baker, Kenneth M., Kumar, Rajesh 01 August 2007 (has links)
The prevailing paradigm is that cardiac ANG II is synthesized in the extracellular space from components of the circulating and/or local renin-angiotensin system. The recent discovery of intracrine effects of ANG II led us to determine whether ANG II is synthesized intracellularly in neonatal rat ventricular myocytes (NRVM). NRVM, incubated in serum-free medium, were exposed to isoproterenol or high glucose in the absence or presence of candesartan, which was used to prevent angiotensin type 1 (AT1) receptor-mediated internalization of ANG II. ANG II was measured in cell lysates and the culture medium, which represented intra- and extracellularly synthesized ANG II, respectively. Isoproterenol increased ANG II concentration in cell lysates and medium of NRVM in the absence or presence of candesartan. High glucose markedly increased ANG II synthesis only in cell lysates in the absence and presence of candesartan. Western analysis showed increased intracellular levels of angiotensinogen, renin, and chymase in high-glucose-exposed cells. Confocal immunofluorocytometry confirmed the presence of ANG II in the cytoplasm and nucleus of high-glucose-exposed NRVM and along the actin filaments in isoproterenol-exposed cells. ANG II synthesis was dependent on renin and chymase in high-glucose-exposed cells and on renin and angiotensin-converting enzyme in isoproterenol-exposed cells. In summary, the site of ANG II synthesis, intracellular localization, and the synthetic pathway in NRVM are stimulus dependent. Significantly, NRVM synthesized and retained ANG II intracellularly, which redistributed to the nucleus under high-glucose conditions, suggesting a role for an intracrine mechanism in diabetic conditions.
|
7 |
The renin angiotensin system and Alzheimer's diseasePalmer, Laura Elyse January 2014 (has links)
No description available.
|
8 |
The effects of angiotensin II on central adrenergic transmissionYu, Huang January 1988 (has links)
No description available.
|
9 |
The role of calcineurin in high-renin and low-renin animal models of pressure overload left ventricular hypertrophyBenson, Victoria Louise, St Vincent's Clinical School, UNSW January 2005 (has links)
Left ventricular hypertrophy (LVH) in response to pressure overload is associated with increased cardiovascular morbidity and mortality, making its prevention an important therapeutic goal. The role of a calcineurin-dependent molecular pathway in the induction of pressure-overload LVH is controversial. The present study tested the hypothesis that, in the setting of LV pressure overload, activation of the systemic renin-angiotensin system was necessary for activation of this calcineurin pathway. Mild LV pressure overload was induced in male Wistar rats by abdominal aortic constriction (AAC) or transverse aortic arch constriction (TAC), producing well-matched pressure gradients of 37 ?? 8 and 35 ?? 15 mmHg, respectively. Tight transverse aortic arch constriction (TTAC) in additional animals produced a pressure gradient of 75 ?? 15 mmHg. Only AAC increased plasma renin concentration and activated the calcineurin pathway, indicated by increased nuclear NFAT3 content. Plasma renin concentration and nuclear NFAT3 content were unchanged in TAC and TTAC animals. AAC animals developed more LVH 21 days post-banding than TAC and TTAC animals: the slope of the relationship between LV/body weight ratio and systolic blood pressure was much steeper in AAC animals than the combined TAC and TTAC animals (20x10-6 versus 5x10-6, p<0.001). Treatment with the calcineurin inhibitor FK506 did not significantly alter the slope of this relationship in the combined TAC and TTAC animals (8x10-6), but FK506 abolished this relationship in AAC animals (-5x10-6, R =0.0003). These data indicate that activation of the calcineurin pathway occurs only in high-renin hypertension, providing an additional stimulus to LVH induction. Calcineurin plays no role in the induction of LVH in low-renin hypertension, which is much more common clinically.
|
10 |
The role of calcineurin in high-renin and low-renin animal models of pressure overload left ventricular hypertrophyBenson, Victoria Louise, St Vincent's Clinical School, UNSW January 2005 (has links)
Left ventricular hypertrophy (LVH) in response to pressure overload is associated with increased cardiovascular morbidity and mortality, making its prevention an important therapeutic goal. The role of a calcineurin-dependent molecular pathway in the induction of pressure-overload LVH is controversial. The present study tested the hypothesis that, in the setting of LV pressure overload, activation of the systemic renin-angiotensin system was necessary for activation of this calcineurin pathway. Mild LV pressure overload was induced in male Wistar rats by abdominal aortic constriction (AAC) or transverse aortic arch constriction (TAC), producing well-matched pressure gradients of 37 ?? 8 and 35 ?? 15 mmHg, respectively. Tight transverse aortic arch constriction (TTAC) in additional animals produced a pressure gradient of 75 ?? 15 mmHg. Only AAC increased plasma renin concentration and activated the calcineurin pathway, indicated by increased nuclear NFAT3 content. Plasma renin concentration and nuclear NFAT3 content were unchanged in TAC and TTAC animals. AAC animals developed more LVH 21 days post-banding than TAC and TTAC animals: the slope of the relationship between LV/body weight ratio and systolic blood pressure was much steeper in AAC animals than the combined TAC and TTAC animals (20x10-6 versus 5x10-6, p<0.001). Treatment with the calcineurin inhibitor FK506 did not significantly alter the slope of this relationship in the combined TAC and TTAC animals (8x10-6), but FK506 abolished this relationship in AAC animals (-5x10-6, R =0.0003). These data indicate that activation of the calcineurin pathway occurs only in high-renin hypertension, providing an additional stimulus to LVH induction. Calcineurin plays no role in the induction of LVH in low-renin hypertension, which is much more common clinically.
|
Page generated in 0.0524 seconds