• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Use of airs and modis thermal infrared channels to retrieve ice cloud properties

Yost, Christopher Rogers 25 April 2007 (has links)
In this study, we use thermal infrared channels to retrieve the optical thickness and effective particle radius of ice clouds. A physical model is used in conjunction with Atmospheric Infrared Sounder (AIRS) temperature and water vapor profiles to simulate the top-of-atmosphere (TOA) brightness temperatures (BTs) observed by the Moderate Resolution Imaging Spectroradiometer (MODIS) for channels located at 8.5, 11.0, and 12.0 µm (1176, 909, and 833 cm-1). The model is initially validated by comparing simulated clear-sky BTs to MODIS-observed clear-sky BTs. We also investigate the effect of introducing a +3 K bias in the temperature profile, a +3 K bias in the surface temperature, and a +20% bias in the water vapor profile in order to test the sensitivity of the model to these inputs. For clear-sky cases, the simulated TOA BTs agree with MODIS to within 2-3 K. The model is then extended to simulate thermal infrared BTs for cloudy skies, and we infer the optical thickness and effective radius of ice clouds by matching MODIS-observed BTs to calculations. The optical thickness retrieval is reasonably consistent with the MODIS Collection 5 operational retrieval for optically thin clouds but tends to retrieve smaller particle sizes than MODIS.

Page generated in 0.0512 seconds