• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 65
  • 7
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 111
  • 54
  • 27
  • 25
  • 21
  • 20
  • 18
  • 17
  • 16
  • 15
  • 12
  • 11
  • 11
  • 11
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

CTCF Contributes to the Regulation of the Ribosomal DNA in Drosophila melanogaster

Guerrero, Paola 2011 December 1900 (has links)
The 35S rDNA gene clusters on the X and Y chromosomes of Drosophila melanogaster are repeats of approximately 150 to 225 copies. Each are transcribed as a single unit by RNA Polymerase I and modified into the 18S, 5.8S, 2S and 28S ribosomal rRNAs. Reduction in the array copy number results in a bobbed phenotype, characterized by truncated bristles and herniations of abdominal cuticle, due to a decrease in protein production. In some copies within the arrays, R1 and R2 retrotransposable elements are inserted in a conserved region of the 28S gene which represses the transcription of a functional rRNA. Inserted arrays are transcribed at very low levels, but it is not clear how they are identified for repression. Similarly, a subset of uninserted arrays are silenced, and the epigenetic mechanism controlling how this decision is made it is also unknown. The CCCTC binding factor (CTCF) is a boundary element binding protein and a transcriptional regulator found in the nucleolus of differentiated mammalian cells, whose localization requires poly (ADP-ribosyl)ation. We investigated whether CTCF might be involved in the regulation of rDNA expression in Drosophila. Our data show that CTCF is found at the nucleolus of both polytene and diploid nuclei, and we have identified binding sites in the 28S gene, R1 and R2 elements by a bioinformatic approach. ChIP data indicate that CTCF binds only to the site in the R1 retrotransposon. Reduction of CTCF or members of the poly(ADP-ribosyl)ation pathway by RNAi in S2 cells causes an increase in the amount of 35S rDNA gene, R1, and R2 transcripts. In flies, CTCF and PARG mutant alleles show disrupted nucleoli and increased rRNA transcripts. Mutant alleles of CTCF suppress variegation of a P-element inserted in a 35S rDNA array, but not of elements inserted elsewhere in the genome. Consistent with a role for CTCF in rRNA regulation, we found that during oogenesis CTCF is recruited to the nucleolus of nurse cells at early stages when the demand of ribosomes is low and it leaves this compartment in later stages when the cell increases rRNA production. We conclude from these studies that CTCF acts as a regulation of rDNA transcription by RNA polymerase I.
42

X-ray structures of p22 c2 repressor-dna complexes: the mechansism of direct and indirect readout

Watkins, Jason Derrick 26 August 2008 (has links)
The P22 c2 repressor protein (P22R) binds to DNA sequence-specifically and helps direct the temperate lambdoid bacteriophage P22 to the lysogenic developmental pathway. To gain insight into its DNA binding mechanism, we solved the 1.6 Å x-ray structure of the N-terminal domain (NTD) of P22R in a complex with a DNA fragment containing the synthetic operator sequence [d(ATTTAAGATATCTTAAAT)]2 This operator has an A-T at position 9L and T-A at position 9R and is termed DNA9T. Van der Waals interactions between protein and DNA appear to confer sequence-specificity. The structure of the P22R NTD – NA9T complex suggests that sequence-specificity arises substantially from interaction of a valine with a complementary binding cleft on the major groove surface of DNA9T. The cleft is formed by four methyl groups on sequential base pairs of 5' TTAA 3'. The valine cleft is intrinsic to the DNA sequence and does not arise from protein-induced DNA conformational change. Protein-DNA hydrogen bonding plays a secondary role in specificity.
43

Repressing the hedgehog signalling pathway : functional analysis of the tumour suppressors patched1 and suppressor of fused /

Svärd, Jessica, January 2007 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2007. / Härtill 4 uppsatser.
44

Characterizing the diphtheria-toxin-repressor (DtxR) regulon in Corynebacterium diphtheriae /

Spinler, Jennifer K. January 2006 (has links)
Thesis (Ph.D. in Microbiology) -- University of Colorado at Denver and Health Sciences Center, 2006. / Typescript. Includes bibliographical references (leaves 142-160). Free to UCDHSC affiliates. Online version available via ProQuest Digital Dissertations;
45

Deciphering mechanisms of transcriptional activation and repression in B lymphocytes /

Malin, Stephen, January 2004 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2004. / Härtill 4 uppsatser.
46

Characterisation of CtBP : a co-repressor of transcription that interacts with the adenovirus E1A protein /

Sundqvist, Anders, January 2001 (has links)
Diss. (sammanfattning) Uppsala : Univ., 2001. / Härtill 3 uppsatser.
47

Regulation of cortical neuron and astrocyte differentiation by the basic helix loop helix protein Hes6

Jhas, Sumit. January 1900 (has links)
Thesis (M.Sc.). / Written for the Dept. of Neurology and Neurosurgery. Title from title page of PDF (viewed 2008/05/14). Includes bibliographical references.
48

Tension at the leading edge differential expression of the cell adhesion molecule Echinoid controls epithelial morphogenesis in Drosophila /

Laplante, Caroline. January 1900 (has links)
Thesis (Ph.D.). / Written for the Dept. of Biology. Title from title page of PDF (viewed 2008/02/12). Includes bibliographical references.
49

Characterization of SUDS3 as a BRMS1 family member in breast cancer

Silveira, Alexandra C. January 2008 (has links) (PDF)
Thesis (Ph. D.)--University of Alabama at Birmingham, 2008. / Title from first page of PDF file (viewed Feb. 13, 2009). Includes bibliographical references (p. 73-93).
50

Characterization of a global regulatory pathway in Streptococcus pneumoniae

Kaufman, Greer E. January 2007 (has links) (PDF)
Thesis (Ph. D.)--University of Alabama at Birmingham, 2007. / Title from first page of PDF file (viewed June 23, 2008). Includes bibliographical references.

Page generated in 0.0404 seconds