• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 606
  • 498
  • 151
  • 125
  • 70
  • 10
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • Tagged with
  • 1729
  • 332
  • 251
  • 229
  • 229
  • 181
  • 125
  • 108
  • 106
  • 103
  • 100
  • 100
  • 96
  • 87
  • 86
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Modeling and Analysis of Reservoir Response to Stimulation by Water Injection

Ge, Jun 2009 December 1900 (has links)
The distributions of pore pressure and stresses around a fracture are of interest in conventional hydraulic fracturing operations, fracturing during water-flooding of petroleum reservoirs, shale gas, and injection/extraction operations in a geothermal reservoir. During the operations, the pore pressure will increase with fluid injection into the fracture and leak off to surround the formation. The pore pressure increase will induce the stress variations around the fracture surface. This can cause the slip of weakness planes in the formation and cause the variation of the permeability in the reservoir. Therefore, the investigation on the pore pressure and stress variations around a hydraulic fracture in petroleum and geothermal reservoirs has practical applications. The stress and pore pressure fields around a fracture are affected by: poroelastic, thermoelastic phenomena as well as by fracture opening under the combined action of applied pressure and in-situ stress. In our study, we built up two models. One is a model (WFPSD model) of water-flood induced fracturing from a single well in an infinite reservoir. WFPSD model calculates the length of a water flood fracture and the extent of the cooled and flooded zones. The second model (FracJStim model) calculates the stress and pore pressure distribution around a fracture of a given length under the action of applied internal pressure and in-situ stresses as well as their variation due to cooling and pore pressure changes. In our FracJStim model, the Structural Permeability Diagram is used to estimate the required additional pore pressure to reactivate the joints in the rock formations of the reservoir. By estimating the failed reservoir volume and comparing with the actual stimulated reservoir volume, the enhanced reservoir permeability in the stimulated zone can be estimated. In our research, the traditional two dimensional hydraulic fracturing propagation models are reviewed, the propagation and recession of a poroelastic PKN hydraulic fracturing model are studied, and the pore pressure and stress distributions around a hydraulically induced fracture are calculated and plotted at a specific time. The pore pressure and stress distributions are used to estimate the failure potentials of the joints in rock formations around the hydraulic fracture. The joint slips and rock failure result in permeability change which can be calculated under certain conditions. As a case study and verification step, the failure of rock mass around a hydraulic fracture for the stimulation of Barnett Shale is considered. With the simulations using our models, the pore pressure and poro-induced stresses around a hydraulic fracture are elliptically distributed near the fracture. From the case study on Barnett Shale, the required additional pore pressure is about 0.06 psi/ft. With the given treatment pressure, the enhanced permeability after the stimulation of hydraulic fracture is calculated and plotted. And the results can be verified by previous work by Palmer, Moschovidis and Cameron in 2007.
162

Shale Oil Production Performance from a Stimulated Reservoir Volume

Chaudhary, Anish Singh 2011 August 1900 (has links)
The horizontal well with multiple transverse fractures has proven to be an effective strategy for shale gas reservoir exploitation. Some operators are successfully producing shale oil using the same strategy. Due to its higher viscosity and eventual 2-phase flow conditions when the formation pressure drops below the oil bubble point pressure, shale oil is likely to be limited to lower recovery efficiency than shale gas. However, the recently discovered Eagle Ford shale formations is significantly over pressured, and initial formation pressure is well above the bubble point pressure in the oil window. This, coupled with successful hydraulic fracturing methodologies, is leading to commercial wells. This study evaluates the recovery potential for oil produced both above and below the bubble point pressure from very low permeability unconventional shale oil formations. We explain how the Eagle Ford shale is different from other shales such as the Barnett and others. Although, Eagle Ford shale produces oil, condensate and dry gas in different areas, our study focuses in the oil window of the Eagle Ford shale. We used the logarithmically gridded locally refined gridding scheme to properly model the flow in the hydraulic fracture, the flow from the fracture to the matrix and the flow in the matrix. The steep pressure and saturation changes near the hydraulic fractures are captured using this gridding scheme. We compare the modeled production of shale oil from the very low permeability reservoir to conventional reservoir flow behavior. We show how production behavior and recovery of oil from the low permeability shale formation is a function of the rock properties, formation fluid properties and the fracturing operations. The sensitivity studies illustrate the important parameters affecting shale oil production performance from the stimulated reservoir volume. The parameters studied in our work includes fracture spacing, fracture half-length, rock compressibility, critical gas saturation (for 2 phase flow below the bubble point of oil), flowing bottom-hole pressure, hydraulic fracture conductivity, and matrix permeability. The sensitivity studies show that placing fractures closely, increasing the fracture half-length, making higher conductive fractures leads to higher recovery of oil. Also, the thesis stresses the need to carry out the core analysis and other reservoir studies to capture the important rock and fluid parameters like the rock permeability and the critical gas saturation.
163

Simulation and Economic Screening of Improved Oil Recovery Methods with Emphasis on Injection Profile Control Including Waterflooding, Polymer Flooding and a Thermally Activated Deep Diverting Gel

Okeke, Tobenna 2012 May 1900 (has links)
The large volume of water produced during the extraction of oil presents a significant problem due to the high cost of disposal in an environmentally friendly manner. On average, an estimated seven barrels of water is produced per barrel of oil in the US alone and the associated treatment and disposal cost is an estimated $5-10 billion. Besides making oil-water separation more complex, produced water also causes problems such as corrosion in the wellbore, decline in production rate and ultimate recovery of hydrocarbons and premature well or field abandonment. Water production can be more problematic during waterflooding in a highly heterogeneous reservoir with vertical communication between layers leading to unevenness in the flood front, cross-flow between high and low permeability layers and early water breakthrough from high permeability layers. Some of the different technologies that can be used to counteract this involve reducing the mobility of water or using a permeability block in the higher permeability, swept zones. This research was initiated to evaluate the potential effectiveness of the latter method, known as deep diverting gels (DDG) to plug thief zones deep within the reservoir and far from the injection well. To evaluate the performance of DDG, its injection was modeled, sensitivities run for a range of reservoir characteristics and conditions and an economic analysis was also performed. The performance of the DDG was then compared to other recovery methods, specifically waterflooding and polymer flooding from a technical and economic perspective. A literature review was performed on the background of injection profile control methods, their respective designs and technical capabilities. For the methods selected, Schlumberger's Eclipse software was used to simulate their behavior in a reservoir using realistic and simplified assumptions of reservoir characteristics and fluid properties. The simulation results obtained were then used to carry out economic analyses upon which conclusions and recommendations are based. These results show that the factor with the largest impact on the economic success of this method versus a polymer flood was the amount of incremental oil produced. By comparing net present values of the different methods, it was found that the polymer flood was the most successful with the highest NPV for each configuration followed by DDG.
164

Data integration for reservoir characterization : a central Arabian oil field /

Aljuhani, Salem Gulaiyel, January 1999 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 1999. / Vita. Includes bibliographical references (leaves 237-240). Available also in a digital version from Dissertation Abstracts.
165

Flow of dilute oil-in-water emulsions in porous media /

Mendez, Zuleyka del Carmen, January 1999 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 1999. / Vita. Includes bibliographical references (leaves 254-259). Available also in a digital version from Dissertation Abstracts.
166

Integrated reservoir characterization of Sun oil and gas field, South Texas /

Dai, Jianchun, January 2000 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2000. / Vita. Includes bibliographical references (leaves 152-158). Available also in a digital version from Dissertation Abstracts.
167

The suitability of Newton Reservoir to be either a coldwater or a warmwater fishery /

Johnson, Jeffrey H. January 1971 (has links)
Thesis (M.S.)--Utah State University, Dept. of Wildlife Resources, 1971. / Includes vita. Includes bibliographical references (leaves 67-70).
168

Implementation of full permeability tensor representation in a dual porosity reservoir simulator

Li, Bowei. January 2001 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2001. / Vita. Includes bibliographical references. Available also from UMI/Dissertation Abstracts International.
169

An evaluation of precipitation as a seismicity triggering mechanism in Southern California

George, Charles Elliott, January 2003 (has links) (PDF)
Thesis (M.S. in E.A.S.)--School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 2004. Directed by James Gaherty. / Includes bibliographical references (leaves 38-42).
170

Application of statistical methods for "flow unit" identification and characterization of a reservoir using well log and core data

Mustafa, Reza. January 1900 (has links)
Thesis (M.S.)--West Virginia University, 2003. / Title from document title page. Document formatted into pages; contains xvii, 103 p. : ill. (some col.), maps. Includes abstract. Includes bibliographical references (p. 52-55).

Page generated in 0.0469 seconds