• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Randomization and Restart Strategies

Wu, Huayue January 2006 (has links)
The runtime for solving constraint satisfaction problems (CSP) and propositional satisfiability problems (SAT) using systematic backtracking search has been shown to exhibit great variability. Randomization and restarts is an effective technique for reducing such variability to achieve better expected performance. Several restart strategies have been proposed and studied in previous work and show differing degrees of empirical effectiveness. <br /><br /> The first topic in this thesis is the extension of analytical results on restart strategies through the introduction of physically based assumptions. In particular, we study the performance of two of the restart strategies on Pareto runtime distributions. We show that the geometric strategy provably removes heavy tail. We also examine several factors that arise during implementation and their effects on existing restart strategies. <br /><br /> The second topic concerns the development of a new hybrid restart strategy in a realistic problem setting. Our work adapts the existing general approach on dynamic strategy but implements more sophisticated machine learning techniques. The resulting hybrid strategy shows superior performance compared to existing static strategies and an improved robustness.
2

Randomization and Restart Strategies

Wu, Huayue January 2006 (has links)
The runtime for solving constraint satisfaction problems (CSP) and propositional satisfiability problems (SAT) using systematic backtracking search has been shown to exhibit great variability. Randomization and restarts is an effective technique for reducing such variability to achieve better expected performance. Several restart strategies have been proposed and studied in previous work and show differing degrees of empirical effectiveness. <br /><br /> The first topic in this thesis is the extension of analytical results on restart strategies through the introduction of physically based assumptions. In particular, we study the performance of two of the restart strategies on Pareto runtime distributions. We show that the geometric strategy provably removes heavy tail. We also examine several factors that arise during implementation and their effects on existing restart strategies. <br /><br /> The second topic concerns the development of a new hybrid restart strategy in a realistic problem setting. Our work adapts the existing general approach on dynamic strategy but implements more sophisticated machine learning techniques. The resulting hybrid strategy shows superior performance compared to existing static strategies and an improved robustness.

Page generated in 0.0989 seconds