1 |
Cholinergic and calcium mapping of contrast and coherence variation of visual stimuli in the cortex of miceSedighi, Hossein 10 1900 (has links)
Le système cholinergique basalo-cortical joue un rôle crucial dans la régulation de la fonction visuelle grâce à son contrôle sur le cortex visuel primaire (V1). Ce système influence particulièrement la plasticité corticale, les processus d'attention et les mécanismes d'apprentissage. Les neurones cholinergiques, en particulier, jouent un rôle fondamental dans les processus d'attention et les mécanismes d'apprentissage, deux aspects clés de la cognition.
Une caractéristique remarquable de ce système est sa capacité à moduler la fonction des neurones visuels. La stimulation des neurones cholinergiques, par exemple, peut entraîner une augmentation du fonctionnement de ces neurones, ce qui se traduit par une amélioration de leur sélectivité pour des tâches visuelles spécifiques. Un exemple frappant de cet effet est observé dans la sensibilité au contraste, une fonction cruciale pour la perception visuelle.
Dans ce contexte, notre étude cherche à explorer et à comparer les caractéristiques distinctes de la libération d'acétylcholine (ACh) et de l'activité neuronale au sein du cortex visuel. Nous nous concentrons particulièrement sur les variations de contraste et de mouvement, deux éléments essentiels de l'environnement visuel, pour mieux comprendre comment le système cholinergique influence ces aspects de la perception visuelle. Pour ce faire, nous avons recours à l'imagerie mésoscopique, une technique avancée permettant d'observer l'activité calcique et cholinergique au niveau neuronal. L'imagerie mésoscopique de l'activité calcique et cholinergique a été réalisée chez des souris transgéniques de Thy1-gCAMP6s et des souris gACh-3.0 (senseur d’ACh transfecté par un virus adeno-associé). Dans cette étude, nous avons utilisé un réseau sinusoïdal horizontal de fréquence spatiale de 0,3 cycles par degré et de contraste variable de 30%, 50%, 75%, et 100%. La stimulation sur des moniteurs a inclus 10 répétitions de 2 secondes, avec des intervalles de 8 secondes. L’amplitude maximale des signaux calcique et cholinergiques a été calculée à l'aide d'un système d'imagerie optique modulaire et d'une caméra scientifique complémentaire métal-oxyde-semi-conducteur, CMOS. Ces mesures ont été effectuées au niveau du V1 ainsi que des zones extrastriées, y compris le cortex occipital latéral (LM), le cortex temporal intermédiaire postérieur (PM) et lateral (AL). L'examen des variationsde l'ACh et des signaux de calcium a été effectué en utilisant l'outil universal mesoscale Imaging dans le logiciel MATLAB. Des changements significatifs dépendant du contraste des signaux provenant de l'indicateur cholinergique (ACh) et calcium (Ca)ont été observés dans toutes les zones visuelles étudiées, à savoir V1, AL et PM, à l'exception de LM. Par exemple, l'amplitude moyenne pour groupe de l'expérience gACh 3.0 a été multipliée par trois lorsque l'on compare la condition de 30 % à la condition de 100 % et pour le groupe gCAMP6s plus de trois fois dans le cortex visuel primaire. En outre, la latence pour la zone V1 a été mesurée, révélant une diminution du temps de réaction à mesure que l'intensité du stimulus augmentait en fonction du contraste, statistiquement significatif pour le groupe gCAMP6s mais non statistiquement significatif pour gACh3.0. La sensibilité au mouvement a été étudiée quant à elle grâce à la projection d’un kinématogramme de points aléatoires (RDK) dont la cohérence de direction variait (de 30%, 50%, 75%, à 100%). Ni le signal calcique si celui d’ACh était sensible à la variation de la cohérence de mouvement. L'efficacité du donepezil (0.1 et 1mg/kg), qui potentialise la transmission cholinergique, était dépendante de la dose et augmentait la libération d’ACh signal mais pas le signal calcique. L’antagonisme des récepteurs muscarinique à l’ACh par la scopolamine (1mg/kg), diminuait le signal calcique. L'activité à l'état de repos présentait une corrélation modeste entre les différentes aires corticales et n’a pas été affectée par le DPZ dans le groupe gACh3.0. Cependant, dans le groupe de la gCAMP6s, les corrélations ont été renforcées après l'administration des injections. En conclusion, les résultats ont révélé une sensibilité accrue au contraste pour la signalisation du calcium et de l'ACh, où les signaux de calcium ont montré une plus grande activation par rapport aux signaux cholinergiques. Cependant les signaux n’étaient pas sensibles à la cohérence des points en mouvement.
Conclusion : La libération d’ACh varie en fonction du stimulus visuel et semble avoir un impact sur l’intensité de la réponse neuronale au stimulus. Les médicaments cholinergiques et anticholinergiques, en particulier lorsqu'ils sont administrés à des doses élevées, peuvent induire des altérations de l'amplitude de l’activité corticale. / The basalo-cortical cholinergic system plays a crucial role in the regulation of visual function through its control over the precise adjustment of cortical processing. This system particularly influences cortical plasticity, attentional processes, and learning mechanisms. Cholinergic neurons, in particular, play a critical role in attention processes and learning mechanisms, which are key aspects of cognition.
A notable feature of this system is its ability to modulate the function of visual neurons. For instance, stimulation of cholinergic neurons can lead to an enhanced operation of these neurons, resulting in improved selectivity for specific visual tasks. This effect is prominently observed in contrast sensitivity, a crucial function for visual perception.
In this context, our study aims to explore and compare the distinct characteristics of acetylcholine (ACh) release and neuronal activity within the visual cortex. We are especially focused on variations in contrast and motion, two essential components of the visual environment, to better understand how the cholinergic system influences these aspects of visual perception.
To achieve this, we employ mesoscopic imaging, an advanced technique for observing calcium and cholinergic activity at the neuronal level. Mesoscopic imaging of calcium and cholinergic activity was conducted in Thy1-gCAMP6s transgenic mice and gACh-3.0 mice (ACh sensor transduced by adeno-associated virus). In this study, we used a horizontal sinusoidal grating of 0.3 cycles per degree spatial frequency with varying contrast levels of 30%, 50%, 75%, and 100%. Stimulation on BenQ monitors included 10 repetitions of 2 seconds, with 8-second intervals. The maximum amplitude of calcium and cholinergic signals was calculated using a modular optical imaging system and a complementary metal-oxide-semiconductor, CMOS, scientific camera. These measurements were taken at V1 and extrastriate areas, including the lateral occipital cortex (LM), posterior intermediate temporal cortex (PM), and lateral (AL). Examination of ACh and calcium signal variations was performed using the universal mesoscale Imaging tool in MATLAB software. Significant contrast-dependent changes in cholinergic (ACh) and calcium (Ca) indicator signals were observed in all visual areas studied, namely V1, AL, and PM, except for LM. For instance, the mean amplitude for the gACh 3.0 experimental group was tripled when comparing the 30% to the 100% condition, and for the gcamp6s group, it was more than tripled in the primary visual cortex. Moreover, the latency for the V1 area was measured, revealing a decrease in reaction time as stimulus intensity increased according to contrast statistically significant for gCAMP6s group but not significant for gACh3.0. Motion sensitivity was studied by projecting a random dot kinematogram with varying directional coherence (from 30%, 50%, 75%, to 100%). Neither the CaS nor the ACh signal was sensitive to variation in motion coherence. The efficacy of DPZ (0.1 and 1mg/kg), which potentiates cholinergic transmission, was dose-dependent and increased ACh release but not calcium signal. Muscarinic ACh receptor antagonism by scopolamine (1mg/kg) decreased calcium signaling. Resting-state activity correlated modestly between the different cortical areas and was not affected by DPZ in the gACh3.0 group. The resting state activity exhibited a modest correlation and was infrequently impacted by treatments in the gACh3.0 group. However, in the gCAMP6s group, both positive and negative correlations were enhanced subsequent to the administration of injections.
As a conclusion, the research findings revealed a strong contrast sensitivity of both calcium and ACh signalling, wherein calcium signals exhibited greater activation compared to ACh signals. The influence of ACh on visual processing is thus shown at a very low cognitive level. The signals were not changed by the coherence of moving dots. Cholinergic and anticholinergic drugs, particularly when administered in high dosages, influence the visual processing.
|
Page generated in 0.0942 seconds