• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Una contribución al desarrollo de los qM_3-retículos

Jiménez, María A. 12 December 2016 (has links)
En esta tesis investigamos la clase de los qM3 retículos y la de los mM3−retículos o M3−retículos monádicos, que son M3−retículos dotados de un cuantificador existencial, en el primer caso, y en el segundo de dos cuantificadores: existencial y universal. También estudiamos la clase de los M3−retículos k–cíclicos, que son M3−retículos dotados de un automorfismo de período k. Hemos organizado el trabajo en cinco capítulos, divididos a su vez en secciones y subsecciones en algunos casos. El Capítulo 1 está dividido en cuatro secciones. En las primeras, repasamos resultados principales sobre retículos distributivos y exponemos distintos conceptos de álgebra universal y espacios de Priestley. Todos los resultados indicados son conocidos. Los hemos incluído tanto para facilitar la lectura posterior, como para fijar las definiciones. En la última sección, introducimos los M3−retículos definidos por A. V. Figallo a sugerencia de A. Monterio en Los M3-Reticulados [14], Rev. Colombiana de Matemática, XXI, 1987. En la primera sección del Capítulo 2, indicamos una dualidad topológica para los M3−retículos. En la segunda sección, utilizando la dualidad, caracterizamos el retículo de las congruencias de estas álgebras y determinamos las álgebras simples y subdirectamente irreducibles, reencontrando los resultados que Figallo había establecido de manera algebraica, de una forma diferente, vía la topología. Luego nos dedicamos al estudio de las congruencias principales y booleanas, demostrando que ambas coinciden, están definidas ecuacionalmente (CPDE) y son congruencias regulares y uniformes. Además probamos que la variedad M3, es a congruencias conmutativas, que es una variedad filtral y discriminadora y tiene la propiedad de extensión de congruencias (PEC). El Capítulo 3, está dividido en cuatro secciones. La primera, está dedicada al estudio del sistema determinante de unM3−retículo finito, mostrando que el conjunto ordenado de sus elementos primos, determina la estructura del mismo. En la segunda y tercera sección, indicamos un método para construir los M3−automorfismos y los M3−epimorfismos, cuando se trata de M3−retículos finitos, y determinamos en cada caso el número de los mismos. En la cuarta sección, referida a los M3−retículos k–cíclicos, probamos que la variedad es semisimple y determinamos el cardinal del álgebra libre finitamente generada. Comprobamos con esos resultados que dicha variedad es finitamente generada y localmente finita. Concluimos la sección estableciendo el número de estructuras cíclicas, no isomorfas, que se pueden definir sobre un M3−retículo finito. En el Capítulo 4, en la primera sección definimos los qM3−retículos y estudiamos algunas propiedades válidas en esta clase. En particular, determinamos cómo a partir de una familia especial de subálgebras de un M3−retículo, podemos obtener un cuantificador existencial de modo que lo transforme en un qM3−retículo. En la segunda sección, extendemos la dualidad de Priestley realizada para los M3−retículos con último elemento, al caso de los qM3−retículos acotados. Empleando esta dualidad, en la tercera sección, probamos que la variedad es semisimple y obtenemos una caracterización funcional de los qM3−retículos simples. De igual modo nos abocamos al estudio de las congruencias principales y booleanas, indicando sus propiedades más destacadas. El Capítulo 5, está dedicado a los M3−retículos monádicos. En la primera sección, mostramos propiedades de los mismos y exhibimos la relación existente entre estas álgebras y los M3−retículos k–cíclicos. En la segunda y tercera sección, presentamos una dualidad topológica que nos facilita describir las congruencias, probar que la variedad es semisimple y obtener una caracterización funcional de los mM3−retículos simples. En la última sección, mostramos, con técnicas topológicas, que se puede interrelacionar ambos cuantificadores, a pesar que en estas lgebras no es posible hacerlo de la manera clásica, puesto que la negación de las mismas no se comporta como una negación de De Morgan; lo que nos permite afirmar que todo qM3−retículo es un M3−retículo monádico. / In this thesis, we study qM3−lattices and mM3−lattices or M3−monadic lattices that are M3−lattices provided with an existential quantifier in the first case, and, in the second case, they are provided with two quantifiers, existential and universal. We also study k–cyclic M3−lattices, which are M3−lattices provided with an automorphism of k period. We have organized this thesis into five chapters, divided into sections and subsections. Chapter 1 is divided into four sections. In the first sections, we review main results on distributive lattices and we expose different universal algebra and Priestley spaces concepts. All the indicated results are well-known. We have included these concepts not only to facilitate the reading of the following sections but also to establish definitions. In the last section, we introduce M3−lattices defined by A.V. Figallo, at suggestion of A. Monteiro in Los M3-Reticulados [14], Rev. Colombiana de Matem´atica, XXI, 1987. In the first section of Chapter 2, we indicate a topological duality for M3-lattices. In the second section, using this duality, we characterize the lattice of congruences of these algebras and we determine simple and subdirectly irreducible algebras, re-finding the results that Figallo had established in algebraic manner, in a different way, by means of topology. Then, we studied principal congruences and Boolean congruences, demonstrating that such congruences coincide, they are equationally defined (EDPC) and they are regular and uniform congruences. We further prove what the M3 variety is to commutative congruencies; that it is a filter and discriminating variety, and that it has the property of congruencies extension (CEP). Chapter 3 is divided into four sections. The first section is dedicated to the study of the determining the system of a finite M3−lattice, proving that the ordered set of its prime elements determines its structure. In the second and third section, we indicate a method to construct the M3−automorphisms and the M3−epimorphisms, when it is about of finite M3−lattices, and we also determine their number in both cases. The fourth section is dedicated to the study of the k–cyclic M3−lattices. First, we prove that the variety is semisimple and we determine the cardinal of finitely generated free algebra. Afterward, we prove with these results that the variety is finitely generated and locally finite. To conclude this section, we determine the number of cyclic structures, non-isomorphic, that can be defined on a finite M3−lattice. In Chapter 4, in the first section we define qM3−lattices and we study some valid properties of such lattices. In particular, we determine how, from a special family of subalgebras of an M3−lattice, we can obtain an existential quantifier in a way that transforms it into a qM3−lattice. In the second section, we extend the Priestley duality for M3-lattices with a last element, in the case of bounded qM3−lattices. By using this duality, in the third section, we prove that the variety is semisimple and we also obtained a functional characterization of the simple qM3−lattices. In the same way, we focus on the study of the principal and Boolean congruences, indicating their most outstanding properties. Chapter 5 is dedicated to the study of monadic M3−lattices. In the first section, we prove properties of the latter mentioned and we exhibit the relationship existing between these algebras and the k–cyclicM3−lattices. In the second and third section, we establish a topological duality that facilitates us to describe the congruences, to prove that the variety is semisimple and to obtain a functional characterization of the simple mM3−lattices. In the fourth section, we demonstrate that, with topological techniques, it is possible to interrelate both quantifiers, although it is not possible to do it in the classic manner in these algebras, since their negation does not behave as a De Morgan negation; which allows us to state that every qM3−lattice is a monadic M3−lattices.
2

Una contribución al estudio de álgebras de De Morgan modales 4-valuadas

Bianco, Estela A. 09 October 2010 (has links)
En 1920, J. Lukasiewicz introdujo sus sistemas de logicas polivalentes como una tentativa de investigar las proposiciones modales y las nociones de posibilidad y necesidad íntimamente relacionadas con tales proposiciones. Los argumentos utilizados por Lukasiewicz están analizados y discutidos en [44, 12]. Tambien hay un análisis histórico detallado del desarrollo de sus ideas en [51]. Lukasiewicz introdujo para cada número natural n 2, un cálculo proposicional n−valente en el cual pueden atribuirse a las proposiciones n valores distintos de verdad. Entre 1940 y 1941, Gr.C. Moisil inició el estudio de las estructuras algebraicas correspondientes a dichos calculos a las que denominó álgebras de Lukasiewicz n−valuadas. Estas algebras son retıculos distributivos con una operacion de negacion y ciertas operaciones unarias que expresan modalidades. En 1940, este autor introdujo las algebras de Lukasiewicz 3−valuadas y las 4−valuadas. La definición original dada por Moisil para las algebras de Lukasiewicz 3−valuadas fue simplificada por el en 1960, y presentada de manera diferente por diversos autores entre los que podemos citar [39, 11, 2]. Posteriormente en 1966, L. Monteiro ([42]) demostró que de los ocho axiomas indicados por A. Monteiro, siete son independientes. Para exhibir la independencia de uno de ellos consideró un ejemplo que motivó a A. Monteiro para definir una nueva variedad de algebras a la que denomino algebras tetravalentes modales. Cabe señalar que Monteiro conjeturó que las mismas darían origen a una lógica 4-valuada con importantes aplicaciones en Ciencias de la Computación J. Font y M. Rius en [22], entre otros resultados, estudiaron dos lógicas que son extensiones modales de la bien conocida lógica de Belnap 4-valuada las cuales tienen como modelo algebraico a las algebras tetravalentes modales. Lo que confirmo la conjetura de Monteiro. En esta tesis hallamos, entre otros resultados, un calculo proposicional estilo Hilbert del cual las algebras tetravalentes modales constituyen su contrapartida algebraica. Más precisamente, a este trabajo lo hemos organizado en tres capítulos. El Capítulo I consta de cinco secciones. Todos los resultados indicados en ellas son conocidos, pero los hemos incluído tanto para facilitar la lectura posterior, como para fijar las notaciones y las definiciones que utilizaremos en lo que sigue. La primera de ellas está referida al álgebra universal y la teoría de categorías. La segunda, contiene tópicos sobre cálculos proposicionales y en las secciones restantes se describen las motivaciones que nos llevaron a considerar el cálculo estudiado. En el Capítulo II, obtuvimos lo que denominamos, en homenaje al Dr. Antonio Monteiro, el cálculo proposicional de Monteiro 4−valuado. Para el cual, utilizando las tecnicas indicadas por H. Rasiowa en [45], demostramos que pertenece a la clase de los sistemas proposicionales implicacionales standard y que es consistente. Ademas, mostramos que en este cálculo se verifica el Teorema de Completitud. Algunos de los resultados obtenidos en este capítulo fueron presentados en el XII y XIV Latin American Symposium on Mathematical Logic que se llevó a cabo en Costa Rica y en Brasil en el 2004 y 2008 respectivamente. En el Capítulo III, con el objeto de obtener un modelo algebraico más adecuado del cálculo proposicional de Monteiro 4−valuado, introducimos una nueva variedad de álgebras que hemos denominado retículos distributivos modales con implicación. Posteriormente, mostramos que existe una equivalencia entre la categoría de estas álgebras y la de las álgebras tetravalentes modales con sus correspondientes homomorfismos. Este último resultado es fundamental para demostrar nuestra afirmación inicial ya que los retículos distributivos modales con implicación son efectivamente más adecuados que las álgebras tetravalentes modales ya que ellos tienen a la implicación!como una de sus operaciones binarias básicas. Finalmente, cabe mencionar que los temas investigados en este capítulo fueron presentados en la Reunión anual de la UMA en el 2006 y se encuentran publicados en [5]. / In 1920, J. Lukasiewicz introduced many-valued logics in an attempt to research the modal propositions and the notions of possibility and necessity intimately related to such propositions. The arguments used by Lukasiewicz are analysed and discussed in [44, 12]. There is also a detailed historical study of his ideas in [51]. For every natural number n 2, Lukasiewicz introduced an n−valued propositional calculus in which he assigned to each proposition n different truth values. Between 1940 and 1941, Gr.C. Moisil started the study of the algebraic counterparts of those propositional calculi which he called n−valued Lukasiewicz algebras. These algebras are distributive lattices with a negation operation and certain unary operations that express modalities. In 1940, this author introduced 3−valued and 4−valued Lukasiewicz algebras. The original definition given by Mosil for 3−valued Lukasiewicz algebras was simplified by him in 1960, and presented in a different way by many authors as we can see in [39, 11, 2] to mention a few. Lately in 1966, L. Monteiro ([42]) proved that seven of the eight axioms indicated by A. Monteiro for these algebras are independent. To exhibit the independence of one of them, he considered an example that motivated A. Monteiro to define a new variety of algebras which he called tetravalent modal algebras. It is worth mentioning that Monteiro expressed his view that in the near future these algebras would give rise to a four-valued modal logic with significant applications in Computer Science. J. Font and M. Rius in [22], among other results, studied two logics that are modal extensions of the so-called Belnaps 4−valued logic. Both of them have tetravalent modal algebras as the algebraic counterpart. These results gave a positive answer to Monteiros conjecture. In this thesis we obtained among other results, a Hilbert style propositional calculus, which has tetravalent modal algebras as the algebraic counterpart. More precisely, we have organized this work in three chapters. Chapter I consists of five sections. All the results indicated are well known, but we have included them both to simplify the reading as well as to fix the notations and the definitions that we will use in this volume. The first one refers to universal algebra and the theory of categories. The second one, contains topics about propositional calculi and in the remainder sections we describe the motivations that gave rise to consider the study of this calculus. In Chapter II, we describe what we called Monteiros 4−valued propositional calculus, to pay homage to Dr. Antonio Monteiro. Taking into account the techniques indicated by H. Rasiowa in [45], we prove that this calculus belongs to the class of standard systems of implicative extensional propositional calculi. Besides, we establish that it is consistent. Moreover, we show that the completeness theorem for this propositional calculus holds. Some of the results obtained in this chapter have been presented in the XII and XIV Latin American Symposium on Mathematical Logic that took place in Costa Rica and Brazil in 2004 and 2008 respectively. In Chapter III, with the purpose of obtaining an algebraic model more appropriate for Monteiros 4−valued propositional calculus, we introduce a new variety of algebras which we called distributive modal lattices with implication. Lately, we show that there is an equivalence between the category of these algebras and that of tetravalent modal algebras with their corresponding homomorphisms. This last result is fundamental in order to prove our initial assertion because modal distributive lattices with implication are more adequated than tetravalent modal algebras, because they have an implication!as one of the basic binary operations. Finally, it can be mentioned that the topics researched in this chapter have been presented in the Reunion Anual de la Union Matematica Aregentina in 2006 and they were published in [5].
3

Matrices inversas generalizadas definidas mediante proyectores y su aplicación a órdenes parciales matriciales

Hernández, María Valeria 05 September 2022 (has links)
[ES] El Análisis Matricial proporciona herramientas muy útiles en la Matemática Aplicada. La teoría de matrices inversas generalizadas constituye una de estas herramientas. Su aplicación a otras áreas de las matemáticas y a otras disciplinas es importante. En esta tesis doctoral se definen e investigan nuevas inversas generalizadas, y se encuentran y caracterizan nuevos órdenes parciales definidos a partir de algunas de ellas. Por lo tanto, esta tesis doctoral se enmarca en dos importantes áreas: el Análisis Matricial y la Teoría de Matrices, y el Algebra de la Lógica (Estructuras Algebraicas Ordenadas). En la primera parte de esta tesis se define e investiga una nueva clase de inversas generalizadas híbridas, las inversas GDMP (y dualmente, las MPGD inversas) en el conjunto de matrices cuadradas de índice arbitrario, como una extensión de las inversas DMP a una clase más general. En esta tesis se presentan las nuevas inversas generalizadas GDMP como cierto producto de matrices que involucra las inversas G-Drazin y la inversa de Moore- Penrose. Se investigan sus propiedades mediante diferentes enfoques y se las caracteriza desde diferentes puntos de vista. Como complemento, se proporciona un algoritmo para hallarlas, que además permite encontrar una inversa G-Drazin. El estudio de proyectores es un área importante en diferentes ramas de las Matemáticas y en el Análisis Matricial en particular. La teoría de inversas generalizadas se utiliza como herramienta para analizarlos y operar con ellos. En la segunda parte de esta tesis se estudia el comportamiento de ciertos proyectores oblicuos definidos mediante inversas generalizadas. A partir de la definición de una adecuada relación de equivalencia en conjuntos particulares de matrices complejas, se introduce una nueva clase de matrices inversas generalizadas como el representante "más simple" de cada clase de equivalencia. Además, se representan como combinación de una inversa interior y la inversa de Moore-Penrose. Esta es la razón por la que se las ha denominado inversas 1MP y MP1. De manera similar se introducen las inversas 2MP y sus duales, las MP2. M. Mehdipour y A. Salemi definieron en [53j la inversa CMP de una matriz cuadrada A poniendo el énfasis en la parte core de la propia matriz A. En esta tesis doctoral se realiza un análisis similar, centrando el enfoque en las inversas 2MP. Surgen de esta manera las inversas generalizadas C2MP. La teoría de inversas generalizadas se relaciona estrechamente con la de órdenes parciales. En esta tesis se retoma el estudio, comenzado en [45], de las propiedades del orden diamante en conjuntos de matrices rectangulares. Como una aplicación de las inversas generalizadas 1MP y MP1, se definen dos nuevas relaciones de orden en conjuntos de matrices rectangulares. Esta tesis está organizadas en cuatro capítulos. En el Capítulo 1 se desarrollan algunos antecedentes del tema de la tesis y se presentan los resultados preliminares necesarios para el desarrollo del resto de los capítulos. En el Capítulo 2 se presentan las clases de matrices GDMP y MPGD, se demuestran propiedades de estas inversas y se describe un algoritmo para hallarlas. El Capítulo 3 se aboca al estudio de ciertos proyectores que permiten definir las clases de inversas generalizadas 1MP, MP1, 2MP y MP2. Al tomar un caso particular de inversa exterior, se definen las inversas C2MP. Además, se presentan las inversas definidas en esta tesis como inversas con espacio rango y espacio nulo prescrito. Finalmente, en el Capítulo 4, con la intención de estudiar una aplicación de la teoría de inversas generalizadas, se profundiza el estudio de órdenes parciales, proporcionando nuevas propiedades del orden diamante. También, se presentan e investigan dos nuevas relaciones de orden en el conjunto de matrices rectangulares y se analizan sus propiedades. Algunos de los resultados obtenidos en esta tesis pueden encontrarse en [37, 38, 39, 40, 41j. / [CA] L'Analisi Matricial proporciona eines molt útils en la Matematica Aplicada. La teoria de matrius inverses generalitzades constitueix una d'aquestes eines. La seua aplicació a altres arees de les matematiques i a altres disciplines és important. En aquesta tesi doctoral es defineixen i investiguen noves inverses generalitzades, i es troben i caracteritzen nous ordres parcials definits a partir d'algunes d'elles. Per tant, aquesta tesi doctoral s'emmarca en dues importants arees: l'Analisi Matricial i la Teoria de Matrius, i l' Álgebra de la Lógica (Estructures Algebraiques Ordenades). En la primera part d'aquesta tesi es defineix i investiga una nova classe d'inverses generalitzades híbrides, les invernes GDMP (i dualment, les MPGD invernes) en el conjunt de matrius quadrades d'índex arbitrari, com una extensió de les invernes DMP a una classe més general. En aquesta tesi es presenten les noves invernes generalitzades GDMP com a cert producte de matrius que involucra les invernes G-Drazin i la inversa de Moore-Penrose. S'investiguen les seues propietats mitjanc;ant diferents enfocaments i es caracteritzen des de diferents punts de vista. Com a complement, es proporciona un algorisme per a trabar-les, que a més permet trabar una inversa G-Drazin. L'estudi de projectors és una area important en diferents branques de les Matemati­ ques i en l' Analisi Matricial en particular. La teoría d'inverses generalitzades s'utilitza com a eina per a analitzar-los i operar amb ells. En la segona part d'aquesta tesi s'estudia el comportament d'uns certs projectors oblics definits mitjanc;ant invernes generalitzades. A partir de la definició d'una adequada relació d'equivalencia en conjunts particulars de matrius complexes, s'introdueix una nova classe de matrius invernes generalitzades com el representant "més simple" de cada classe d'equivalencia. A més, es representen com a combinació d'una inversa interior i la inversa de Moore­ Penrose. Aquesta és la raó per la qual se les ha denominades invernes lMP i MPl. De manera similar, es defineixen les inverses 2MP i els seus duals, les MP2. M. Mehdipour i A. Salemi van definir en [53] la inversa CMP d'una matriu quadrada A posant l'emfasi en la part core de la propia matriu A. En aquesta tesi doctoral es realitza una analisi similar, centrant l'enfocament en les inverses 2MP. Sorgeixen d'aquesta manera les inverses generalitzades C2MP. En aquesta tesi es reprén l'estudi, començat a [45], de les propietats de l'ordre diamant en conjunts de matrius rectangulars. Comuna aplicació de les inverses generalitzades lMP i MPl, es defineixen dues noves relacions d'ordre en conjunts de matrius rectangulars. Finalment, es troba una altra caracterització de l'ordre diamant. Aquesta tesis esta organitzada en quatre capítols. En el Capítol 1 es desenvolupen alguns antecedents del tema de la tesi i es presenten els resultats preliminars necessaris per al desenvolupament de la resta dels capítols. En el Capítol 2 es presenten les classes de matrius GDMP i MPGD, es demostren propietats d'aquestes inverses i es descriu un algorisme per a trobar-les. El Capítol 3 es dedica a l'estudi d'uns certs projectors que permeten definir les classes d'inverses generalitzades lMP, MPl, 2MP i MP2. Particularitzant la inversa exterior considerada, es defineixen les inverses C2MP. A més, es presenten les inverses definides en aquesta tesi com a inverses amb espai rang i espai nul prescrit. Finalment, en el Capítol 4, amb la intenció d'estudiar una aplicació de la teoría d'inverses generalitzades, s'aprofundeix en l'estudi d'ordres parcials, proporcionant noves propietats de l'ordre diamant. També, es presenten i investiguen dues noves relacions d'ordre en el conjunt de matrius rectangulars i s'analitzen les seues propietats. Alguns dels resultats obtinguts en aquesta tesi poden trobar-se en [37, 38, 39, 40, 41]. / [EN] The Matrix Analysis provides with very useful tools for the Applied Mathematics. The theory of Generalized Inverse Matrices constitutes one of these tools. Its application is important for other areas of mathematics and other disciplines. In this PhD. thesis, new generalized inverses are defined and investigated, and new partial orders defined by sorne of them are found and characterized. Therefore, this PhD. thesis is based on two important areas: the Matrix Analysis and the Theory of Matrices, and the Algebra of Logic (Ordered Algebraic Structures). In the first part this PhD. thesis, a new kind of hybrid generalized inverse is defined and investigated, the GDMP-inverses (and their duals, the MPGD-inverses), in the setting of square matrices of an arbitrary index, as an extension of the DMP inverses to a more general class. In this PhD. thesis, generalized GDMP-inverses are introduced as a certain product of matrices that involve the G-Drazin inverse and the Moore-Penrose inverse. The pro­ perties are investigated by different methods and characterized from different points of view. As a complement, it is provided an algorithm to compute them, which also allows to find a G-Drazin inverse. The study of projectors is an important area in different branches of Mathematics and particularly in the Matrix Analysis. The theory of generalized inverses is used as a tool to analyze them and operate with them. In the second part of this PhD. thesis, the behaviour of certain oblique projectors defined by generalized inverses is studied. From the definition of an adequate equivalence relation in particular sets of complex matrices, a new class of generalized inverse matrices is introduced as the "simplest" representant of each class of equivalence. Besides, they are represented as a product of an inner inverse and the Moore-Penrose inverse. This is the reason why they have been named lMP and MPl inverses. Both the core inverse and the DMP inverse are expressed as an adequate product involving a specific outer inverse and the Moore-Penrose inverse. Similarly, the 2MP inverses and their duals, the MP2 inverses, are defined. M. Mehdipour and A. Salemi defined in [53] the CMP inverse of a square matrix A, emphasizing the care part of the A matrix itself. In this PhD. thesis, a similar analysis is done, focusing on the care part of 2MP inverses. In this way, the generalized C2MP inverses are investigated. The study of the diamond order properties in sets of rectangular matrices is inves­ tigated in this PhD. thesis. Two new order relations in sets of rectangular matrices are defined as an application of the generalized lMP and MPl inverses. Finally, another characterization of the diamond order is investigated in this PhD. thesis. This PhD. thesis is organized into four chapters. In Chapter 1, sorne introduction of the PhD. thesis topic are developed and the preliminary results needed for the development of the rest of the chapters are presented. In Chapter 2, the classes of GDMP and MPGD matrices are presented, properties of these inverses are proved and an algorithm to find them is described. Chapter 3 is focused on the study of certain projectors that allow to define the classes of generalized lMP, MPl, 2MP and MP2 inverses. When taking a particular case of outer inverse, the C2MP inverses are defined. Moreover, the inverses defined in this PhD. thesis are presented as inverses with prescribed range and null space. Finally, in Chapter 4, the partial orders are studied in more detail, providing new properties of the diamond order, with the purpose of studying an application of the theory of generalized inverses. Finally, two new order relations are presented and investigated in the set of rectangular matrices and their properties are analyzed. Sorne of the results obtained in this PhD. thesis can be found in [37, 38, 39, 40, 41]. / Hernández, MV. (2022). Matrices inversas generalizadas definidas mediante proyectores y su aplicación a órdenes parciales matriciales [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/186007

Page generated in 0.0433 seconds