• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 216
  • 67
  • 62
  • 26
  • 12
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 4
  • 4
  • 2
  • Tagged with
  • 501
  • 398
  • 148
  • 123
  • 77
  • 74
  • 70
  • 70
  • 69
  • 64
  • 64
  • 62
  • 51
  • 49
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Regulação da homeostasia do retículo endoplasmático em linfócitos B na imunodeficiência comum variável. / Regulation of homeostasis of endoplasmic reticulum in B lymphocytes in common variable immunodeficiency.

Susana Elaine Alves da Rosa 30 September 2011 (has links)
A imunodeficiência comum variável (CVID) é caracterizada por hipogamaglobulinemia. Anteriormente identificou-se uma paciente com CVID que apresenta nível aumentado de estresse de retículo endoplasmático (ER), secundário a desregulação da via UPR. No presente trabalho, estendemos esta análise para outros pacientes e avaliamos o perfil de maturação de seus linfócitos B. Métodos: Western-blot, RT-PCR, Q-PCR, Citometria de Fluxo e cultura de células B ex vivo e imortalizadas. Resultados: A análise de 16 pacientes com CVID e 9 indivíduos saudáveis revelou três pacientes com porcentagens aumentadas de linfócitos B imaturos no sangue periférico. A análise da expressão de RNAm para BiP e XBP-1 em linfócitos B destes pacientes, após estímulo com LPS in vitro, identificou que os linfócitos B de um deles apresenta estresse de RE. Conclusão: Identificamos um subgrupo de pacientes com CVID que apresentam linfócitos B imaturos no sangue periférico. Um membro deste subgrupo apresenta estresse aumentado de ER. / Common Variable Immunodeficiency (CVID) is characterized by hypogammaglobulinemia. Previously a CVID patient was identified with increased levels of Endoplasmic Reticulum (ER) stress due to dysregulation of the UPR. In the present study these analyses were performed in other patients and healthy donors. Maturation markers of B lymphocytes were also characterized in these individuals. Methods: Western-blot, RT-PCR, Q-PCR, Flow cytometry and culturing of ex vivo and immortalized B cells. Results: The analysis of 16 CVID patients and 9 healthy donors revealed three patients that present higher percentage of immature B cells in peripheral blood. Analysis of expression of BiP and XBP1 induced by LPS treatment of B lymphocytes from these patients revealed that one patient present increased levels of ER stress.
142

Special features of vesicle trafficking in skeletal muscle cells

Kaisto, T. (Tuula) 31 October 2003 (has links)
Abstract Skeletal muscles are composed of long, multinucleated cells called myofibers, which are highly differentiated cells and therefore unique in structure. In the present study the organization of the endocytic and exocytic pathways in isolated rat skeletal myofibers was defined with confocal and electron microscopic methods. In isolated myofibers the I band areas were shown to be active in endocytosis. The sorting endosomes were distributed in a cross-striated fashion while the recycling and late endosomal compartments were located to perinuclear areas and interfibrillar spaces, where they followed the course of microtubules. Protein trafficking in the different stages of muscle cell differentation was also analyzed. The studies with L6 myoblasts and myotubes showed that during myogenesis varying fractions of different viral glycoproteins were sorted from the endoplasmic reticulum (ER) into a specific compartment that did not recycle with the Golgi apparatus. This compartment is suggested to be the sarcoplasmic reticulum (SR). The studies with living muscle cells showed further changes in vesicle trafficking taking place during myogenesis. With GFP-tagged tsO45G protein, transport containers were detected in 20% of the infected myofibers, while all infected L6 myoblasts or myotubes showed intense movement of corresponding structures. We also detected significant differences between the pre-and post-Golgi traffickings in myofibers. When the distribution of the ER in adult myofibers was studied, the confocal microscopic data showed that the labeling patterns of the rough endoplasmic reticulum (RER) and the SR markers were different. Blocking of different cargo proteins in the RER revealed two discrete distribution patterns, neither of them identical with the SR. The collected electron microscopic data supported the idea that in mature myofibers there are two separate RER compartments. We suggest that the RER compartment capable of export function located around the myonuclei and on the Z lines, while the non-exporting RER compartment localized to terminal cisternae and probably took care of the synthesis of the SR proteins.
143

Dysregulated expression of proteins associated with ER stress, autophagy and apoptosis in tissues from nonalcoholic fatty liver disease

Lee, Seungwoo, Kim, Soohee, Hwang, Seungwoo, Cherrington, Nathan J., Ryu, Doug-Young 08 September 2017 (has links)
Nonalcoholic fatty liver disease (NAFLD) is categorized into nonalcoholic fatty liver (NAFL) and nonalcoholic steatohepatitis (NASH) and has emerged as a risk factor for more critical clinical conditions. However, the underlying mechanisms of NAFLD pathogenesis are not fully understood. In this study, expression of proteins associated with endoplasmic reticulum (ER) stress, apoptosis and autophagy were analyzed in normal, NAFL and NASH human livers by western blotting. Levels of some ER stress-transducing transcription factors, including cleaved activating transcription factor 6, were higher in NASH than in the normal tissues. However, the expression of a majority of the ER chaperones and foldases analyzed, including glucose-regulated protein 78 and ER protein 44, was lower in NASH than in the normal tissues. Levels of apoptosis markers, such as cleaved poly (ADP-ribose) polymerase, were also lower in NASH tissues, in which expression of some B-cell lymphoma-2 family proteins was up-or down-regulated compared to the normal tissues. The level of the autophagy substrate p62 was not different in NASH and normal tissues, although some autophagy regulators were up-or down-regulated in the NASH tissues compared to the normal tissues. Levels of most of the proteins analyzed in NAFL tissues were either similar to those in one of the other two types, NASH and normal, or were somewhere in between. Together, these findings suggest that regulation of certain important tissues processes involved in protein quality control and cell survival were broadly compromised in the NAFLD tissues.
144

The integrated effects of selected inducers of endoplasmic reticulum stress, the unfolded protein response and apoptosis on P-Glycoprotein mediated drug resistance in MCF-7 breast carcinoma cells

Pillay, Leeshan January 2015 (has links)
>Magister Scientiae - MSc / Purpose: One of the leading causes of death reported in women worldwide is breast cancer. Manytumours, including breast cancer, associated with poor prognosis, have received a renewed focus and increased perspective with regard to drug discovery and innovation towards developing rational combination regimens of first-line anticancer drugs with novel compounds that target diverse hallmarks of the cancer phenotype. Multidrug resistance (MDR), which has been found to significantly decrease the efficacy of anticancer drugs and causes tumor recurrence, has been a major challenge in clinical cancer treatment with chemotherapeutic drugs for decades. Several mechanisms of overcoming drug resistance have been postulated and the well known P-glycoprotein (P-gp) including other drug efflux transporters are considered to be critical in pumping anticancer drugs out of cells which in turn results in unsuccessful chemotherapy treatments. The endoplasmic reticulum (ER) is an interconnecting organelle which synthesizes proteins and its quality control processes ensures the proper protein folding, post-translational modifications and conformation of secretory and trans-membrane proteins. Previous studies demonstrated that geldanamycin (GA), a benzoquinone ansamycin antibiotic, the antibiotic, tunicamycin (TM) and the sesquiterpene lactone, thapsigargin (TG) have been found to cause ER stress and consequently, cellular arrest. GA is known to manifest anti-cancer activity through the inhibition of Hsp90-chaperone, TM interferes with N-glycosylation of newly synthesized proteins triggering the unfolded protein response, while TG inhibits intracellular Ca2+ ATPases resulting in increased cytosolic Ca2+. Cellular stress conditions, lead to accumulation of unfolded or misfolded proteins in the endoplasmic reticulum lumen which results in a unfolded protein response (UPR) to maintain cell survival in cancer cells. ERS has been previously reported to enhance MDR1 transcriptional induction and P-gp transport function in cancer cells, however, prolonged endoplasmic reticulum stress conditions and inadequate unfolded protein response force cells undergo apoptosis. In this study, we examined the effects of GA, TG and TM alone and in combination to determine the cellular response of the MCF-7 breast carcinoma cell line with regard to proliferation and P-gp-mediated drug efflux activity and apoptosis. Methods: Analyses of MCF-7 breast carcinoma cells exposed to Endoplasmic Reticulum Stress (ERS) inducers geldanamycin, thapsigargin and tunicamycin, alone and in combination, included growth curves alone and in the presence of 24 hour IC50 inhibitory concentrations of the 3 ERS inducers alone, dose-response curves (MTT cytotoxicity assays) of the ERS alone and in combination, analysis of P-glycoprotein-mediated efflux pump activity in the presence of the ERS inducers alone and in combination (Calcein-AM efflux assays), analysis of viability, cytotoxicity and early apoptosis via caspase-3/7 expression (Triplex assay) and morphological staining of apoptotic and/or necrotic cells in the presence of IC50 inhibitory concentrations of the ERS inducers alone with Annexin V-FITC. Results: This study investigated the effects of Endoplasmic Reticulum Stress (ERS) inducers on growth and proliferation of MCF-7 breast carcinoma cells in culture. The MCF-7 cell line was exposed to different concentrations of ERS inducers alone and in combination with each other. All responses occurred in a dose- and time- dependent manner. When combined at equimolar log dose concentrations, integrated effects yielded enhanced cytotoxic properties as IC50 values were drastically decreased in combination as opposed to single ERS inducer responses. Combined effect on P-glycoprotein-mediated drug efflux activity yielded minor but insignificant decreases in efflux pump activity at different time intervals as opposed to the increase in cellular efflux in the presence of the ERS inducers alone at different time intervals. Caspase-3/7 apoptotic protein expression was increased as log doses of ERS inducers alone were increased, leading to cell necrosis at higher cytotoxic concentrations. The determined IC50 growth inhibitory concentrations after 24 hours were confirmed by the Annexin V-FITC demonstrating early apoptotic, necrotic and viable cells in the presence of the ERS inducers alone. Conclusion: This study demonstrated a significant growth inhibition of MCF-7 breast carcinoma cells upon exposure to ERS inducers alone. Results suggested that when ERS inducers are used in combination, their efficacy is enhanced as 50 percent inhibitory concentrations were considerably lower in combination as opposed to when used alone. The present study is consistent with previous studies with geldanamycin, and was the 1st to investigate the effects of geldanamycin, thapsigargin and tunicamycin in combination and with reference to P-gp efflux activity. Results suggested that in combination, efflux activity may be reduced, and efficacy may be enhanced. To enhance efficacy would be a major breakthrough in cancer drug discovery and development-targeting specific populations of cancer cells and reducing ERS-induced toxicity to normal cells and vital organs.
145

mTORC1 Activates SREBP-2 through Maintenance of Endosomal Cycling and Suppression of Autophagy

Eid, Walaa January 2017 (has links)
The mammalian target of rapamycin complex 1 (mTORC1) is known to regulate lipogenesis through sterol regulatory element binding proteins (SREBPs), master regulators of cholesterol and fatty acid synthesis. Through an incompletely understood mechanism, mTORC1 triggers translocation of SREBPs, an endoplasmic reticulum (ER) resident protein, to the Golgi, where mature SREBP is proteolytically produced to activate transcription of lipogenic genes. Low ER cholesterol is a well-known trigger for SREBPs activation, which includes translocation, maturation, and transcriptional activation. The study investigated whether mTORC1 activates SREBP by limiting cholesterol delivery to the ER. The findings indicate an increase in mTORC1 activity is accompanied by lower ER cholesterol and by SREBP-2 activation, a transcription factor primarily responsible for cholesterol synthesis. A decrease in mTORC1 activity, on another hand, coincides with higher ER cholesterol and lower SERBP-2 activity. I further report that this ER cholesterol is of lysosomal origin, as blocking the exit of cholesterol from lysosomes by U18666A or NPC1 siRNA prevents ER cholesterol from rising and, consequently, SREBP-2 is activated without mTORC1 activation. I identified two membrane trafficking processes, triggered by low mTORC1 activity, supply the lysosomes with cholesterol: autophagy and re-routing of endosomes to lysosomes. Indeed, a dual blockade by Atg5-/- and rab5 kept the ER cholesterol low even when mTORC1 activity was low, and resulted in SREBP-2 activation. Conversely, over-expressing Atg7, which forces autophagy, raises the ER cholesterol and suppresses SREBP-2 activity even when mTORC1 activity is high. Thus, it can be concluded that mTORC1 actively suppresses the formation of autophagosomes and promotes endosomal recycling, both of which prevents cholesterol to reach the lysosomes, thereby reducing cholesterol levels in the ER and activating SREBP-2.
146

Studies on the effect of experimental insulin-dependent diabetes mellitus and hypothyroidism on rat cardiac and saroplasmic reticulum function

Black, Shawn Clive January 1990 (has links)
The objective of these studies was to investigate mechanisms whereby cardiac sarcoplasmic reticulum (SR) calcium transport activity may be influenced by changes in the lipid environment of the SR membrane in the experimental endocrine disease states hypothyroidism and insulin-dependent diabetes mellitus. These endocrine disease states were studied to determine, respectively, if SR function is influenced by endogenous acylcarnitine associated with the SR membrane and if SR phospholipid acyl composition plays a role in diabetes-induced cardiomyopathy. The effects of endogenous acylcarnitines on SR calcium transport in hypothyroidism were of interest since it has previously been implicated that acyl carnitines play a regulatory role in SR function. SR calcium transport was not affected at two weeks, but was significantly reduced at four, six and eight weeks following thyroidectomy. Endogenous acyl carnitines were detectable in the SR membrane fraction isolated from both euthyroid control and thyroidectomized animals. The level of acyl carnitine associated with the SR did not correlate with calcium transport activity. Since acylcarnitine did not appear to play a role in the reduced SR calcium transport, SR calcium pump protein was quantified. The reduced SR calcium transport of thyroidectomized animals, manifest at four weeks, was shown to correlate with a reduction in SR acylphosphoprotein level. Therefore the reduced SR calcium transport activity of hypothyroidism is not related to the level of SR acyl carnitine, but rather a hypothyroid-induced reduction in SR calcium pump sites. Since omega-3 fatty acids affect parameters relevant to diabetes-induced cardiomyopathy, it was of interest to determine the cardiac effects of omega-3 fatty acid treatment of streptozocin (STZ)-induced diabetic animals. Omega-3 fatty acid treatment significantly reduced the development of diabetic cardiomyopathy and improved isolated cardiac SR calcium transport activity of STZ-induced diabetic animals. To determine if the cardiac and SR changes were related to membrane changes induced by omega-3 fatty acids, the fatty acyl composition of phospholipid was determined. Phospholipid analysis of cardiac phosphatidylcholine and phosphatidylethanolamine, and total SR phospholipid indicated modest changes in the omega-3 fatty acid component. Omega-3 fatty acid treatment produced slight (statistically insignificant) changes in SR cholesterol levels. Therefore a change in membrane phospholipid acyl composition may not account for the observed cardiac and SR functional changes. / Pharmaceutical Sciences, Faculty of / Graduate
147

Mechanisms of regulation of mitochondria-endoplasmic reticulum contact sites

Couto, Renata Lopes Familiar 28 October 2019 (has links)
No description available.
148

EDEM2 stably disulfide-bonded to TXNDC11 catalyzes the first mannose trimming step in mammalian glycoprotein ERAD / 哺乳動物の構造異常糖タンパク質分解におけるマンノーストリミングの第一ステップは、TXNDC11と安定なジスルフィド結合を形成したEDEM2により触媒される

GINTO, GEORGE 25 May 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第22633号 / 理博第4622号 / 新制||理||1664(附属図書館) / 京都大学大学院理学研究科生物科学専攻 / (主査)教授 森 和俊, 教授 平野 丈夫, 教授 川口 真也 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
149

Chemical-Proteomic methods to interrogate disulfide-bond formation:

Bechtel, Tyler Jeffrey January 2019 (has links)
Thesis advisor: Eranthie Weerapana / Disulfide-bonding cysteine residues perform critical roles in the structural stabilization and redox regulation of protein function. Secreted proteins are often enriched for structural disulfide bonds conferring conformational stability in the oxidizing extracellular environment. The controlled formation of disulfide bonds in secreted proteins is regulated in the endoplasmic reticulum (ER) by the protein disulfide isomerase (PDI) family. To investigate disulfide-bond formation in the ER, quantitative chemical-proteomic methods were coupled to subcellular-fractionation-based ER enrichment. Cysteine reactivity studies identified highly reactive post-translationally modified cysteine residues including disulfide-bonding cysteines. Upon discovering a highly reactive population of traditionally oxidized cysteines, the percentage of oxidation for cysteines localizing to the ER was determined. Next, ER function was chemically perturbed to evaluate changes to cysteine oxidation following upregulation of the unfolded protein response (UPR). Disulfide bond formation was specifically disrupted in the ER by CRISPR-Cas9-mediated PDIA1 and PDIA4 knockout. The effects of PDI knockout on cancer cell phenotype and changes to cysteine oxidation states were evaluated. Finally, in vitro studies were performed to evaluate PDIA4 oxidase activity and identify potential PDIA4-selective inhibitors. In the future, the platforms developed within may be applied to profiling changes to cysteine oxidation in other biological systems such as other organelles and disease states. / Thesis (PhD) — Boston College, 2019. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
150

Properties of the non-catalytic nucleotide site of the Ca²⁺-ATPase of sarcoplasmic reticulum

Davidson, George Alexander January 1986 (has links)
Properties of the regulatory nucleotide binding site of the Ca²⁺-ATPase of skeletal muscle sarcoplasmic reticulum have been investigated. Previously, several lines of evidence have indicated the existence of both catalytic and regulatory nucleotide binding sites on the same polypeptide species. The present study concentrates on the interaction of the ATP analogue, 2'-3'-0-(2,4,6-trinitrocyclohexadienylidine) adenosine 5'-triphosphate, (TNP-ATP), with sites on the non-phosphorylated and phosphorylated enzyme. In particular those conformational transitions linking TNP-ATP fluorescence to the phosphoenzyme subspecies have been sought. Previous studies have demonstrated a close relationship between TNP-ATP fluorescence and phosphoenzyme formed from ATP plus Ca²⁺, or from inorganic phosphate (Pi) in the absence of Ca²⁺, in the reverse direction of the cycle. However, the precise relationship of TNP-ATP fluorescence to the energy transducing conformations of the ATPase is controversial. TNP-ATP binding was investigated by spectrophotometric methods and by the synthesis of [ ¹⁴C] TNP-ATP. [ ¹⁴C] TNP-ATP bound to the ATPase site with high affinity ([TNP-ATP] 0. 5 = 0.12 uM), and · a stoichiometry of 5.4 nmol/mg. [ ¹⁴C] ATP binding stoichiometry was 6.1 nmol/mg, demonstrating that TNP-ATP binds to a single family of sites. The nature of the phosphoenzyme intermediate species that results in enhanced TNP-ATP fluorescence was investigated. NEM derivitization, Sr²⁺-transport and Ca²⁺-oxalate uptake have previously been found to alter the distribution or relative levels of phosphoenzyme intermediates. Modification of thiol groups responsible for phosphoenzyme decomposition (SHd), using N-ethylmaleimide (NEM) (0.4 mM) with 50 uM Ca²⁺, 1 mM AMP-PNP at pH 7.0, resulted in a 50% decrease in Ca²⁺-uptake, Ca²⁺-ATPase activity and ADP-insensitive E-P (E₂-P), while total EP (E₁-P + E₂-P = 3.2 nmol/mg), remained unaltered. ATP-dependent TNP-ATP enhanced fluorescence decreased by 50% under these conditions. Ca²⁺-oxalate induced turnover has previously been shown to decrease steady-state E₂-P levels by prevention of Ca²⁺ gradient formation. Oxalate (5 mM) caused a 40% decrease in ATP-induced TNP-ATP fluorescence levels while total EP levels remained relatively unaltered. Previous studies have shown that Sr²⁺-induced turnover favours higher levels of E₂-P by inhibiting the reverse reaction from E₂-P to E₁-P. Strontium-induced turnover increased TNP-ATP fluorescence by 10% as compared to that of Ca²⁺, without affecting steady-state E-P levels, consistent with an E₂-P conformation relationship to enhanced TNP-ATP fluorescence. The binding site for TNP-ATP on the enzyme was investigated by chase studies using millimolar concentrations of nucleotides. ATP and ADP diminished TNP-ATP fluorescence competitively, with apparent Km values of 1.25 and 0.54 mM respectively, consistent with their affinities of binding to the regulatory site. The rates of decrease of fluorescence (25 and 34 sec⁻¹ at 5 ᵒC, respectively), were of the same order of magnitude as the derived "off" rate of TNP-ATP from the site of enhanced fluorescence (33 sec⁻¹), consistent with TNP-ATP being bound to the regulatory site of the enzyme. Enhanced TNP-ATP fluorescence has previously been related to decreased water activity of the probe site. Alteration of water activity by structure- forming (Deuterium oxide) and structure-breaking solutes (KSCN) in relation to fluorescence were explored. Replacement of H₂O by D₂O altered the fluorescence of unbound TNP-ATP. The apparent for TNP-ATP binding to the E₂-P conformation of the regulatory site. The regulatory site appears to be a modified form of the phosphorylated catalytic site. It is proposed that TNP-ATP fluorescence monitors an enzyme conformation related to Ca²⁺ binding to an inward oriented site of low affinity. The mechanism of K⁺ fluorescence quenching appears to be via an acceleration of dephosphorylation, as opposed to a change in affinity of the enzyme for TNP-ATP, as previously suggested. The K⁺ sensitivity of TNP-ATP fluorescence has proved useful in demonstrating a direct interaction of valinomycin with the enzyme through the monovalent cation binding site. Valinomycin appears to bind directly to the enzyme and to selectively accelerate the "off" rate of K⁺ from this site.

Page generated in 0.2874 seconds