• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 217
  • 67
  • 62
  • 26
  • 12
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 4
  • 4
  • 2
  • Tagged with
  • 502
  • 399
  • 148
  • 123
  • 77
  • 74
  • 70
  • 70
  • 69
  • 64
  • 64
  • 62
  • 51
  • 49
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Mechanisms of High Glucose-induced Decrease in β-cell Function

Tang, Christine 23 February 2011 (has links)
Chronic hyperglycemia, a hallmark of type 2 diabetes, can decrease β-cell function and mass (β-cell glucotoxicity); however, the mechanisms are incompletely understood. The objective was to examine the mechanisms of β-cell glucotoxicity using in vivo and ex vivo models. The hypothesis is that oxidative stress plays a causal role in high glucose-induced β-cell dysfunction in vivo via pathways that involve endoplasmic reticulum (ER) stress and JNK. The model of β-cell glucotoxicity was achieved by prolonged i.v. glucose infusion (to achieve hyperglycemia). In Study 1, 48h glucose infusion increased total and mitochondrial superoxide levels in islets, and impaired β-cell function in vivo and ex vivo. Co-infusion of the superoxide dismutase mimetic Tempol decreased total and mitochondrial superoxide, and prevented high glucose-induced β-cell dysfunction in vivo and ex vivo. These results suggest that increased superoxide generation plays a role in β-cell glucotoxicity. In Study 2, 48h glucose infusion increased activation of the unfolded protein response (XBP-1 mRNA splicing and phospho-eIF2α levels). This was partially prevented by Tempol. Co-infusion of the chemical chaperone 4-phenylbutyrate with glucose decreased spliced XBP-1 levels, and prevented high glucose-induced β-cell dysfunction in vivo and ex vivo. Co-infusion of 4-phenylbutyrate also decreased total and mitochondrial superoxide induced by high glucose. These results suggest that 1) ER stress plays a causal role in high glucose-induced β-cell dysfunction, and 2) there is a link between oxidative stress and ER stress in high glucose-induced β-cell dysfunction in vivo. In Study 3, JNK inhibition using the inhibitor SP600125 in rats or JNK-1 null mice prevented high glucose-induced β-cell dysfunction ex vivo and in vivo. SP600125 prevented high-glucose-induced β-cell dysfunction without decreasing total and mitochondrial superoxide levels. Both Tempol and 4-phenylbutyrate prevented JNK activation induced by high glucose. These results suggest a role of JNK activation in high glucose-induced β-cell dysfunction downstream of increased superoxide generation and ER stress in vivo. Together, the results suggest that 1) oxidative stress, ER stress and JNK activation are causally involved in β-cell glucotoxicity, and 2) High glucose-induced oxidative stress and ER stress are linked, and both impair β-cell dysfunction via JNK activation in vivo.
212

Contribution of sarcoplasmic reticulum calcium pumping to resting mouse muscle metabolism

Norris, Sarah January 2009 (has links)
Few studies have quantified resting mouse muscle metabolism and even fewer studies have separated the contribution of sarcoplasmic reticulum (SR) Ca2+ pumping to resting metabolic rate. Furthermore, the studies that have attempted to quantify the contribution of Ca2+ pumping have used indirect methods to inhibit SR Ca2+ ATPase activity. The purpose of this study is to directly quantify resting muscle oxygen consumption and the contribution of SR Ca2+ pumping to resting oxygen consumption in mouse hindlimb muscles by using CPA to specifically inhibit Ca2+ pump activity in intact muscles at rest. The TIOX system was used to measure resting muscle VO2 of extensor digitorum longus (EDL) and soleus (SOL) muscles at 30oC and 20oC. C57BL mice aged 8-12 weeks were used with an average whole body mass of 23.8 g and EDL and SOL dry weights averaging 1.88 mg and 1.8 mg, respectively. All muscle VO2 measurements are expressed per gram dry weight. There were no differences (P>0.1) in resting muscle VO2 between EDL and SOL muscles at either 30oC (EDL, 2.05 µL/g/s; SOL, 2.27 µL/g/s) or 20oC (EDL, 0.62 µL/g/s; SOL, 0.71 µL/g/s). The average Q10 (3.1) was determined from EDL and SOL VO2 measures at 20oC and 30oC. The contribution of Ca2+ pumping by the sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) was measured at 30oC using a range of CPA concentrations (1-15 µM) . There was a concentration-dependent effect of CPA on oxygen consumption with increasing CPA concentrations up to 10 µM resulting in progressively greater reductions in muscle oxygen consumption. Specifically, 1, 5, 10, and 15 µM CPA caused an 11, 35.4, 49.5, and 50.3% reduction in VO2. There were no differences (P>0.1) between 10 and 15 µM CPA indicating that 10 µM CPA induces maximal inhibition of SERCA in isolated muscle preparations. The results indicate that the Ca2+ pumping by SERCA is responsible for ~50% of oxygen consumption in resting mouse EDL and SOL muscle. This is the first study to use a direct inhibitor of SERCA to quantify the contribution of Ca2+ cycling to resting oxygen consumption and therefore is a more accurate reflection of the actual contribution of SERCA to resting muscle oxygen consumption compared to previous findings. These results suggest that SERCA energy consumption accounts for a large portion of resting muscle metabolism and may represent a potential therapeutic target for metabolic alterations to oppose obesity.
213

Characterization of HSP47 Expression in <i>Xenopus Laevis</i> Cell Culture and Embryos

Hamilton, Amanda January 2005 (has links)
The heat shock or stress response is a transient response to stressful stimuli that protects vital cellular proteins from damage and irreversible aggregation. Heat shock proteins (Hsps) are molecular chaperones that bind to unfolded protein and inhibit their aggregation, thereby maintaining their solubility until they can be refolded to their native conformation. Hsp47 is an endoplasmic reticulum (ER)-resident protein that serves as a molecular chaperone during collagen production. Collagen is the major class of insoluble fibrous protein found in the extracellular matrix and in connective tissues. It is the single most abundant protein of the animal kingdom; at least 14 different forms exist, each with distinct structures and binding properties. The various types of collagen all possess protein regions with the distinct triple helical conformation. This complex physical structure requires very organized assembly and HSP47 has been established as an integral component of this process for collagen types I-V. Most of the previous studies examining the expression and function of hsp47 have been conducted with mammalian cultured cells. The present study represented the first investigation of the expression of hsp47 in the poikilothermic vertebrate, <i>Xenopus laevis</i>. Full-length <i>Xenopus</i> hsp47 nucleotide and amino acid sequences were obtained from Genbank and compared with hsp47 from chicken, mouse, rat, human and zebrafish. <i>Xenopus</i> HSP47 protein had an identity of approximately 77% with chicken, 73% with mouse, 72% with rat and human, and 70% with zebrafish. Most of the sequence identity between HSP47 from all investigated organisms occurred centrally in the amino acid sequence and in several carboxyl terminal regions. Three key features were conserved between HSP47 proteins from most species investigated: a hydrophobic leader sequence, two potential glycosylation sites and the ER-retention signal, RDEL. A partial cDNA clone encoding <i>Xenopus</i> hsp47 was obtained from the American Type Culture Collection (ATCC) and used to generate hsp47 antisense riboprobe for the purpose of investigating hsp47 mRNA accumulation in <i>Xenopus</i> A6 kidney epithelial cells and embryos. Northern blot analysis detected hsp47 mRNA constitutively in A6 cells. The expression pattern for hsp47 mRNA was compared with two other <i>Xenopus</i> heat shock proteins that have been previously characterized in our laboratory: hsp70, a cystolic/nuclear hsp and BiP, an ER-resident hsp. The results of hsp47 mRNA accumulation in A6 cells suggested that the expression pattern for <i>Xenopus</i> hsp47 was unique but, with respect to some stressors, resembled that of a cytosolic hsp rather than an ER-resident hsp. HSP47 protein levels were also examined in A6 cells. Heat shock, sodium arsenite and b-aminopropionitrile fumerate treatments enhanced hsp47 accumulation. In some experiments, western blot analysis revealed the presence of two closely sized protein bands. It is possible that minor differences in HSP47 protein size may be due to post-translational modification, namely phosphorylation or glycosylation. The present study also examined the accumulation and spatial pattern of hsp47 mRNA accumulation during <i>Xenopus laevis</i> early development. Hsp47 was constitutively expressed throughout <i>Xenopus</i> early development. Constitutive levels of hsp47 mRNA in unfertilized eggs, fertilized eggs and cleavage stage embryos indicated that these transcripts were maternally inherited. Constitutive hsp47 mRNA accumulation was enhanced in neurula and tailbud embryos compared to earlier stages. This finding may be explained by the shift towards organogenesis during these stages. Whole mount <i>in situ</i> hybridization revealed hsp47 message along the dorsal region of the embryo, in the notochord and somites, as well as in the head region including the eye vesicle. Hsp47 mRNA induction in <i>Xenopus</i> embryos was also examined in response to heat shock. Hsp47 mRNA accumulated in response to heat shock immediately following the midblastula transition (MBT). In tailbud stages, hsp47 mRNA accumulated in the notochord, somites and head region. Northern blot analysis and whole mount <i>in situ</i> hybridization results revealed an expression pattern that coincided well with the development of collagen-rich tissues thereby substantiating the proposed role of HSP47 as a procollagen molecular chaperone.
214

Constrained Diffusion in the Dendritic Endoplasmic Reticulum and Consequences for Early Secretory Receptor Trafficking and Postsynaptic Function

Wang, Tingting January 2009 (has links)
<p>The proper modification and trafficking of plasma membrane proteins are essential for normal neuronal function, such as dendrite morphogenesis, spine formation and synaptic plasticity. The secretory organelles including endoplasmic reticulum and Golgi apparatus are critical for the trafficking of these molecules as shown in fibroblasts. Although these secretory organelles have been observed in neurons including dendritic branches, their spatial organization and function in protein trafficking, neuronal development and plasticity are not clear yet. Here, I used photobleaching and photoactivation approaches combined with electron microscopy to show that although rapidly diffusing within the continuous network of the somato-dendritic ER, membrane proteins such as nascent AMPA receptors are confined by ER spatial complexity. The spatial range of ER membrane protein mobility becomes progressively confined over neuronal development and is rapidly restricted by synaptic activity. Thus, constrained lateral mobility within the ER provides a novel mechanism for compartmentalized trafficking of nascent receptors throughout dendrites. I also identified an ER protein as a novel microtubule-associated protein regulating dendritic ER spatial complexity, neuronal dendrite elongation and spine formation. Together, these results describe the spatial organization of dendritic ER and its role in regulating membrane protein trafficking, neuronal morphogenesis and postsynaptic functions.</p> / Dissertation
215

Contribution of sarcoplasmic reticulum calcium pumping to resting mouse muscle metabolism

Norris, Sarah January 2009 (has links)
Few studies have quantified resting mouse muscle metabolism and even fewer studies have separated the contribution of sarcoplasmic reticulum (SR) Ca2+ pumping to resting metabolic rate. Furthermore, the studies that have attempted to quantify the contribution of Ca2+ pumping have used indirect methods to inhibit SR Ca2+ ATPase activity. The purpose of this study is to directly quantify resting muscle oxygen consumption and the contribution of SR Ca2+ pumping to resting oxygen consumption in mouse hindlimb muscles by using CPA to specifically inhibit Ca2+ pump activity in intact muscles at rest. The TIOX system was used to measure resting muscle VO2 of extensor digitorum longus (EDL) and soleus (SOL) muscles at 30oC and 20oC. C57BL mice aged 8-12 weeks were used with an average whole body mass of 23.8 g and EDL and SOL dry weights averaging 1.88 mg and 1.8 mg, respectively. All muscle VO2 measurements are expressed per gram dry weight. There were no differences (P>0.1) in resting muscle VO2 between EDL and SOL muscles at either 30oC (EDL, 2.05 µL/g/s; SOL, 2.27 µL/g/s) or 20oC (EDL, 0.62 µL/g/s; SOL, 0.71 µL/g/s). The average Q10 (3.1) was determined from EDL and SOL VO2 measures at 20oC and 30oC. The contribution of Ca2+ pumping by the sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) was measured at 30oC using a range of CPA concentrations (1-15 µM) . There was a concentration-dependent effect of CPA on oxygen consumption with increasing CPA concentrations up to 10 µM resulting in progressively greater reductions in muscle oxygen consumption. Specifically, 1, 5, 10, and 15 µM CPA caused an 11, 35.4, 49.5, and 50.3% reduction in VO2. There were no differences (P>0.1) between 10 and 15 µM CPA indicating that 10 µM CPA induces maximal inhibition of SERCA in isolated muscle preparations. The results indicate that the Ca2+ pumping by SERCA is responsible for ~50% of oxygen consumption in resting mouse EDL and SOL muscle. This is the first study to use a direct inhibitor of SERCA to quantify the contribution of Ca2+ cycling to resting oxygen consumption and therefore is a more accurate reflection of the actual contribution of SERCA to resting muscle oxygen consumption compared to previous findings. These results suggest that SERCA energy consumption accounts for a large portion of resting muscle metabolism and may represent a potential therapeutic target for metabolic alterations to oppose obesity.
216

Plasticité de l'expression de protéines clés du couplage excitation-contraction du muscle squelettique dans un modèle d'atrophie fonctionnelle

Bastide, Bruno, Mounier, Yvonne, January 2003 (has links) (PDF)
Habilitation à diriger des recherches : Sciences naturelles : Lille 1 : 2003. / Synthèse de travaux en français et articles publiés en anglais reproduits dans le texte. N° d'ordre (Lille 1) : 396. Résumé. Curriculum vitae. Pagination multiple pour les articles reproduits. Bibliogr. p. 150-188 et à la suite des articles. Liste des publications.
217

Detection of Endoplasmic Reticulum Stress and Progression of Steatohepatitis in Mink (Neovison vison) with Fatty Liver

Pal, Catherine 04 August 2011 (has links)
This study used the non-alcoholic steatohepatitis activity index (NAI), presence of fibrosis and Mallory-Denk bodies (MDBs), and quantification of glucose regulated protein 78 (GRP78) messenger ribonucleic acid (mRNA) as indicators of steatohepatitis development and recovery in the American mink (Neovison vison). Mink were fasted for 0, 1, 3, 5, or 7 days, and one group re-fed 28 days post 7-day fast. Liver NAI indicated that moderate fatty liver developed after 5 days of fasting. Liver recovery was achieved after the re-feeding period. There was no evidence of fibrosis or MDB formation. Upregulation of GRP78 was observed by day 7 of fasting indicating endoplasmic reticulum stress. This effect was greater in females. Results suggest that liver steatosis did not advance to steatohepatitis within a 7-day fast. However, should the length of fast be increased the mink may be at risk. Results also show that liver recovery from simple fatty liver is possible.
218

The Herp and HRD1-dependent degradation of TRPP2

Lara, Carlos J. Unknown Date
No description available.
219

Post-transcriptional Regulation of Membrane-associated RNAs

Jagannathan, Sujatha January 2013 (has links)
<p>RNA localization provides the blueprint for compartmentalized protein synthesis in eukaryotic cells. Current paradigms indicate that RNAs encoding secretory and membrane proteins are recruited to the endoplasmic reticulum (ER), via positive selection of a `signal peptide' tag encoded in the protein. Thus RNA sorting to the ER follows protein sorting and the RNA is considered a passive player. However, RNAs have been shown to access the ER independent of the signal peptide and display a wide range of affinities to the ER that does not correlate with signal peptide strength. How and why mRNAs localize to the ER to varying extents and whether such localization serves a purpose besides protein sorting is poorly understood. To establish the cause and consequence of RNA binding to the ER membrane, I pose three primary questions: 1. How are mRNAs targeted to the ER? 2. Once targeted, how are mRNAs anchored to the ER membrane? 3. Are ER localized mRNAs subject to transcript-specific regulation? </p><p>I address cytosolic mRNA targeting to the ER by comparing the partitioning profiles of cytosolic/nuclear protein-encoding mRNA population (mRNACyto) to that of mRNAs encoding a signal peptide (mRNAER). I show that, at a population level, mRNACyto display a mean ER enrichment that is proportional to the amount of ER-bound ribosomes. Thus, I propose that targeting of mRNACyto to the ER is stochastic and over time, the specific interactions engaged by an individual mRNACyto with the ER determines its steady state partitioning profile between the cytoplasm and the ER. </p><p>To address the modes of direct binding of mRNA to the ER, I examined the association of various RNA populations with the ER after disrupting membrane-bound ribosome's interaction with its ER receptor. mRNACyto and most of mRNAs encoding secretory proteins (mRNACargo) are released upon disruption of ribosome-receptor interactions, indicating no direct mRNA-ER interactions. However, the population of mRNAs that encode resident proteins of the endomembrane organelles such as the ER, lysosome, endosome and the Golgi apparatus (mRNARes) maintain their association with the ER despite the disruption of ribosome-receptor interactions. These results indicate direct binding of mRNARes to the ER, further suggesting that the function of the encoded proteins dictates the mode of association of corresponding mRNA with the ER. </p><p>To uncover the mode of mRNARes binding directly to ER, I performed differential proteomic analysis of cytosolic and membrane bound RNA-protein complexes, which revealed a network of RNA binding proteins that interact uniquely with the ER-anchored mRNAs. The anchoring of endomembrane resident protein-encoding RNAs to the ER through these RNA binding proteins may reflect an imprinting of the ER with the information necessary for the continued biogenesis of the endomembrane organelle system even in situations where translation-dependent ER targeting of an mRNA is compromised. </p><p>Finally, I address whether ER-bound mRNAs can be regulated differentially by comparing the fates of two signal peptide-encoding RNAs, B2M and GRP94, during the unfolded protein response (UPR). I show that in response to ER stress, GRP94 mRNA, but not B2M, relocates to stress-induced RNA granules, thus escaping an RNA decay program that operates at the ER membrane during the UPR. Hence, I propose that the mode of RNA association to the ER is subject to regulation and influences the fate of RNAs during cellular stress. Thus, by demonstrating diverse modes of mRNA localization to the ER and differential regulation of ER bound mRNAs during cellular stress, my work has helped establish an emerging role for the ER as a post-transcriptional gene regulatory platform.</p> / Dissertation
220

Endoplasmic reticulum associated degradation (ERAD) overflow pathways.

Lamberti, Kelvin Robert. January 2008 (has links)
Accumulation of misfolded proteins in the endoplasmic reticulum (ER) causes numerous human pathologies. Biochemical evidence suggests that soluble misfolded proteins are retrotranslocated out of the ER, via the endoplasmic reticulum associated degradation (ERAD) pathway, for proteosome-mediated cytoplasmic degradation. Excess, misfolded- or insoluble proteins, are suggested to cause induction of “overflow” degradation pathways. For soluble proteins, overflow to vacuole-mediated destruction is suggested to occur via two Golgi-to-vacuole (Gvt) routes, the alkaline phosphatase (ALP), direct route, or, a carboxypeptidase Y- (CPY-), prevacuolar compartmentvacuole, indirect route, though only the CPY route is thought to degrade soluble proteins. Insoluble aggregate-containing structures are suggested to be degraded by engulfment by membranes of unknown origin and trafficking to the vacuole for destruction, via an autophagic pathway. To confirm biochemical evidence, wild-type (BY4742), autophagosome- (W303/ATG14), CPY- and autophagy pathway- (W303/VPS30), and proteosome (WCG/2) mutants of S. cerevisiae yeasts were transformed with a high expression pYES plasmid and mutant (Z) human alpha-1- proteinase inhibitor (A1PiZ), giving rise to the derivatives cells BY4742/Z, W303/ATG14/Z, W303/VPS30/Z and WCG/2/Z, respectively. Electron microscopy using gold labeling for A1PiZ, markers for the ER, the ERAD ER channel protein, Sec61, or the chaperone, binding protein (BiP), ALP for the ALP pathway, and CPY for the CPY pathway, was used. Overexpression of A1PiZ seems to result in targeting to the vacuole via a prevacuolar, CPY-like compartment (PVC, 200-500 nm), though CPY and A1PiZ appears not to colocalise, unconvincingly confirming collaborative biochemical data. Large amounts of A1PiZ localise in the cytosol, possibly indicating a largely proteasome-mediated degradation. ER-resident A1PiZ targeting to the vacuole seems also to occur by the budding of the ER and peripheral plasma membrane or ER membrane only. This occurs in all cells, but especially in ATG14 gene (ΔATG14) mutants, possibly indicating autophagosome-mediated degradation independence, in the latter mutants. The ATG14 mutation gave rise to crescent-shaped, initiating membranelike (IM-like) structures of approximately Cvt vesicle-diameter, possibly indicating that ΔATG14 blocks autophagosome- (500-1000 nm) and Cvt vesicle (100-200 nm) enclosure, after core IM formation. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2008.

Page generated in 0.0652 seconds