• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Retinitis pigmentosa : linkage studies and analysis of candidate region

Mohamed, Zulqarnain January 1999 (has links)
Retinitis pigmentosa (RP) defines a group of hereditary retinal dystrophies characterised by a progressive deterioration of night vision and reduction of the visual field due to photoreceptor degeneration. RP shows both clinical and genetic heterogeneity and has X- linked, autosomal recessive and autosomal dominant forms of inheritance. In addition, a 'digenic' form of inheritance had also been reported. To date, positional cloning and candidate gene approaches have identified more than 20 genes and gene loci responsible for RP, and the number is increasing. In the present study, three Scottish RP families were included in a linkage study, to determine if the disease locus in each of these families mapped to any of the known RP loci on chromosomes 7 (7p and 7q), 8 and 19. Significant positive LOD scores were obtained for family G-adRP, with markers mapping within the RPIO locus (7q31-q32). The highest LOD score obtained was 3.913 (at 0% recombination) with marker D7S514. Results for the remaining two families were generally inconclusive. However, LOD scores obtained indicated that linkage to 7p and 7q was significantly excluded for family F-adRP. No conclusive exclusion of linkage was obtained for family C-RP. Two candidate genes exist within the RPIO candidate region, namely the blue cone pigment gene (BCP) and the metabotropic glumate receptor 8 (GRM8) gene. Mutation screening was performed using SSCP analysis to evaluate the involvement of these genes in the pathogenesis of RP in family G-adRP. An A->C polymorphism was observed in the final base of codon 122 of the BCP gene (exon 2). The amino acid residue (glycine) is not altered, however, and is thus unlikely to be involved in the disease process. Furthermore, this polymorphism was noted in both affected and unaffected individuals of family G-adRP, as well as in control individuals. For the GRM8 gene, only eight out of ten exons were available for analysis at the time of study. SSCP mobility shifts were detected in 4 PCR fragments (exons IV, V and X, and exon VIIIb). Sequencing analysis of exon VIIIb revealed an A-C polymorphism in the first base of codon 561. The involvement of this polymorphism in the disease process is unlikely as the change does not alter the encoded amino acid (arginine) and it was detected in both affected and unaffected members of G- adRP. In exon X, a heterozygous C>T sequence transition was noted 29bp downstream of the stop codon. However, the shift was again found in both affected and unaffected individuals of family G-adRP, therefore unlikely to be pathogenic. Sequence analysis of the remaining two exons (exons IV and V) did not reveal any deviation from the published control sequence. The direct cDNA selection, technique was employed in the attempt to isolate transcripts from the candidate region. YACs spanning the region of interest were obtained and their inserts verified by FISH and PCR-based STS content screening. Selection was performed on human retinal cDNA library preparations, and the selected products were subcloned to create a selected-cDNA library for further analysis. Sequencing analysis of a subset (27clones) of the selected products indicated that some fragments were indeed derived from within the 7q3 l-q32 region, as shown by BLAST and FASTA sequence homology searches, although most were repetitive in origin. Hits to known genes or other transcribed sequences (ESTs or cloned cDNA) were also obtained, although several of these genes have been shown to map elsewhere in the genome. At present, family G-adRP is the fourth autosomal dominant RP family whose disease locus was mapped within the RPIO region (7q31-q32). All known candidate genes identified to date have been excluded, which necessitates positional cloning strategies to be employed. Using the direct cDNA selection technique, a library of cDNA fragments putatively isolated from a portion of the RPIO candidate region has been constructed in this study. However, time was a limiting factor, and as a result, only a minor subset (less than 15%) of the selected-cDNA library was analysed. Further analysis and characterisation of the selected cDNAs is warranted to identify clones that represent (novel) transcripts mapping within the 7q31-q32 candidate region, which will undoubtedly expedite the identification of the RPIO gene.
2

Assessing Motivations for Genetic Counseling and Testing, and the Impact of Genetic Testing in Individuals with Retinal Dystrophies

Pillis, Devin Marie 09 August 2022 (has links)
No description available.
3

Optimisation du transfert de gène dans les cellules ganglionnaires rétiniennes de chien et de primate non-humain avec un vecteur AAV2 : implications pour le traitement par une approche d’optogénétique du modèle canin RPE65 / Optimization of gene transfer in retinal ganglion cells of dogs and non-human primates with AAV2 vector : implications for the treatment by an optogenetic approach of Briard RPE65

Tshilenge, Kizito tshitoko 07 October 2016 (has links)
Les dystrophies rétiniennes héréditaires (DRH) sont un ensemble de pathologies rétiniennes incurable provoquant la cécité. Les DRH sont caractérisées par le dysfonctionnement/dégénérescence des photorécepteurs et le remodelage de la structure de la rétine. Une des approches thérapeutiques envisagées pour traiter les DRH est la thérapie génique spécifique, c’est à dire le remplacement du gène défectueux par un gène sain. Cependant, bien qu’efficace, la thérapie génique spécifique n’est pas toujours applicable, en particulier quand la dégénérescence est trop avancée ou quand le gène muté n’est pas connu. Afin de traiter tous les cas de DRH quelle que soit leur origine génétique et leur stade de progression, une approche de thérapie génique d’addition est envisagée : Le transfert d’optogène. Cela consiste à convertir les cellules encore présentes dans la rétine malgré la dégénérescence, en cellule photosensible suite à l’expression d’un optogène (protéine photosensible). Mon projet de thèse a consisté dans un premier temps à évaluer le transfert de gène avec un vecteur AAV2/2 dans les cellules ganglionnaires rétiniennes de chien et de primate non-humain. Cette première partie a permis d’initier un second projet qui a eu pour objectif d’évaluer l’efficacité du transfert d’optogène (Channelrhodopsin-2) pour la restauration de la fonction visuelle dans un modèle canin de dystrophie rétinienne (le chien Rpe65- /-). / Inherited retinal dystrophies (IRD), a group of incurable retinal pathologies, are associated with visual impairments due to a malfunction and/or degeneration of photoreceptors and/or retinal pigment epithelium (RPE). Significant progress in the field of gene therapy has allowed the development and the characterization of an innovative tool to treat IRD patients: recombinant adeno-associated viral vectors (AAV) that carry and deliver therapeutic nucleic acids. However, due to the heterogenic nature of IRD, gene supplementation will not allow to treat all forms of IRD because: (i) the numbers of mutated genes are unknown according to the state of art; (ii) the dominant forms of IRD in which mutations lead to negative effects are not eligible; (iii) the limit of AAV packaging excludes large-sized mutated genes and (iv) this approach is only applicable when photoreceptors are still alive. To treat all IRD patients, a novel therapeutic approach, independently of the mutated gene and the disease kinetic is suitable: the optogene transfer (light-sensitive protein) to restore photosensitivity in neurodegenerative retina by converting surviving retinal cells into photosensors. The primary goal of my research was to promote and characterize adeno-associated virus type 2-(AAV2) transduction in retinal ganglion cells of dog and non-human primate. A second aim was to investigate the feasibility of AAV2-mediated optogenes transfer in retinal ganglion cells as a therapeutic approach to restore visual function in RPE65 deficient dog, a canine model of IRDs.
4

Preuve de concept de thérapie génique d’une dystrophie rétinienne en l’absence de modèle animal de la pathologie : cas de la Choroïdérémie / Proof of concept of gene therapy of retinal dystrophy in the absence of animal model of the disease : case of Choroideremia

Cereso, Nicolas 12 December 2014 (has links)
Les dystrophies rétiniennes héréditaires (DRH) sont des maladies qui conduisent à une perte de la vision au cours de leur évolution. Les premiers essais cliniques utilisant la thérapie génique pour traiter ces maladies ont été réalisés et apportent des résultats encourageants. En amont de telles études, les essais précliniques s'effectuent le plus souvent sur modèle animal. Cependant, pour un certain nombre de DRH, il n'existe pas de modèle animal approprié ce qui compromet l'arrivée d'un traitement à un stade clinique. C'est le cas de la Choroïdérémie, qui représente 2% des DRH. La choroïdérémie est caractérisée par une perte de la vision nocturne dès la petite enfance et conduit à la cécité autour des 40-50 ans. Son diagnostic précoce et son évolution lente résultent en une grande fenêtre thérapeutique qui fait de la choroïdérémie une bonne candidate pour la thérapie génique. Sur le plan génétique, la maladie est causée par une mutation dans le gène CHM qui est localisé sur le chromosome X et code pour la Rab Escort Protein 1 (REP1). Cette protéine est impliquée dans le processus de prénylation de petites protéines GTPases, les protéines Rab. Afin de pallier au manque de modèle animal, nous avons généré au cours de ce travail de thèse, un modèle cellulaire humain de la choroïdérémie pour évaluer l'efficacité d'un protocole de thérapie génique sur le tissu réellement atteint in vivo. Pour cela, nous avons reprogrammé des fibroblastes de patient CHM-/y en cellules souches pluripotentes induites (iPS), que nous avons ensuite différenciées en Epithélium Pigmentaire Rétinien (EPR). Nous avons caractérisé cet EPR, montrant que c'est une couche monocellulaire polarisée possédant une morphologie et une expression de marqueurs caractéristiques. De plus, ce tissu est fonctionnel, sur le plan du transport de fluide et de la phagocytose, et possède le même phénotype biochimique que celui observé chez les patients. Dans un but de thérapie génique et afin d'évaluer le vecteur viral le plus efficace sur nos cellules, j'ai testé un panel de 5 sérotypes d'AAV et démontré que l'AAV2/5 est le plus efficient pour transduire un EPR dérivé de cellules iPS humaines. J'ai ensuite utilisé un AAV2/5-CAG-CHM afin d'évaluer l'efficacité fonctionnelle du vecteur et j'ai pu montrer qu'outre une expression correcte du transgène, le traitement de cellules de patients déficientes pour REP1 avec ce vecteur permet de restaurer une activité normale de prénylation. Nous avons donc démontré la supériorité d'efficacité de transduction de l'AAV2/5 dans des cellules d'EPR humain et soulignons le potentiel d'un modèle d'EPR pathologique dérivé de cellules iPS pour apporter une preuve de concept de thérapie génique en absence d'un modèle animal approprié. / Inherited retinal dystrophies (IRDs) lead to a progressive vision loss. The first clinical trials using gene transfer to treat such diseases have been performed with positive results. Prior to clinical trials, preclinical studies are usually performed on animal models. However, for many IRDs, appropriate animal models do not exist, which compromises their progress towards a clinical trial. An example of an IRD that lacks an appropriate model is choroideremia, which represents 2% of IRD patients. It is characterized by night blindness in childhood, followed by progressive loss of the visual field resulting in blindness by 40–50 years of age. Its early diagnosis and slow evolution result in a large therapeutic window making choroideremia a good candidate for gene therapy. Genetically, the disease is caused by a mutation in the CHM gene located on the X chromosome and encoding the Rab Escort Protein 1 (REP1). This protein is involved in the prenylation of small GTPases, the Rab proteins. To palliate the lack of an animal model, we generated a human cellular model of choroideremia in order to evaluate the efficacy of a gene therapy approach in the tissue that is affected in vivo.Towards this aim, we reprogrammed REP1-deficient fibroblasts from a CHM-/y patient into induced pluripotent stem cells (iPScs), which we differentiated into retinal pigment epithelium (RPE). We characterized the iPSc-derived RPE that is a polarized monolayer with a classic morphology, expresses characteristic markers, is functional for fluid transport and phagocytosis, and mimics the biochemical phenotype of patients. In terms of gene therapy and to evaluate the most efficient viral vector, I assayed a panel of 5 adeno-associated virus (AAV) vector serotypes and showed that AAV2/5 is the most efficient at transduce the iPSc-derived RPE. I then transduced the iPSc-derived RPE of a choroideremia patient with an AAV2/5-CAG-CHM and demonstrated that this vector is able to restore a normal prenylation function to the cells.To conclude, I demonstrated the superiority of the transduction efficiency of AAV2/5 in the iPSc-derived RPE and highlight the potential of a diseased RPE model derived from iPS cells to provide a proof of concept of gene therapy in the absence of a suitable animal model.
5

Biallelic Mutations in the Autophagy Regulator DRAM2 Cause Retinal Dystrophy with Early Macular Involvement

El-Asrag, M.E., Sergouniotis, P.I., McKibbin, M., Plagnol, V., Sheridan, E., Waseem, N., Abdelhamed, Z., McKeefry, Declan J., Van Schil, K., Poulter, J.A., UK Inherited Retinal Disease Consortium, Johnson, C.A., Carr, I.M., Leroy, B.P., Baere, E. de, Inglehearn, C.F., Webster, A.R., Toomes, C.l., Ali, M. 14 May 2015 (has links)
No / Retinal dystrophies are an overlapping group of genetically heterogeneous conditions resulting from mutations in more than 250 genes. Here we describe five families affected by an adult-onset retinal dystrophy with early macular involvement and associated central visual loss in the third or fourth decade of life. Affected individuals were found to harbor disease-causing variants in DRAM2 (DNA-damage regulated autophagy modulator protein 2). Homozygosity mapping and exome sequencing in a large, consanguineous British family of Pakistani origin revealed a homozygous frameshift variant (c.140delG [p.Gly47Valfs∗3]) in nine affected family members. Sanger sequencing of DRAM2 in 322 unrelated probands with retinal dystrophy revealed one European subject with compound heterozygous DRAM2 changes (c.494G>A [p.Trp165∗] and c.131G>A [p.Ser44Asn]). Inspection of previously generated exome sequencing data in unsolved retinal dystrophy cases identified a homozygous variant in an individual of Indian origin (c.64_66del [p.Ala22del]). Independently, a gene-based case-control association study was conducted via an exome sequencing dataset of 18 phenotypically similar case subjects and 1,917 control subjects. Using a recessive model and a binomial test for rare, presumed biallelic, variants, we found DRAM2 to be the most statistically enriched gene; one subject was a homozygote (c.362A>T [p.His121Leu]) and another a compound heterozygote (c.79T>C [p.Tyr27His] and c.217_225del [p.Val73_Tyr75del]). DRAM2 encodes a transmembrane lysosomal protein thought to play a role in the initiation of autophagy. Immunohistochemical analysis showed DRAM2 localization to photoreceptor inner segments and to the apical surface of retinal pigment epithelial cells where it might be involved in the process of photoreceptor renewal and recycling to preserve visual function.

Page generated in 0.0713 seconds