1 |
Structure analysis and lesion detection from retinal fundus imagesGonzalez, Ana Guadalupe Salazar January 2011 (has links)
Ocular pathology is one of the main health problems worldwide. The number of people with retinopathy symptoms has increased considerably in recent years. Early adequate treatment has demonstrated to be effective to avoid the loss of the vision. The analysis of fundus images is a non intrusive option for periodical retinal screening. Different models designed for the analysis of retinal images are based on supervised methods, which require of hand labelled images and processing time as part of the training stage. On the other hand most of the methods have been designed under the basis of specific characteristics of the retinal images (e.g. field of view, resolution). This compromises its performance to a reduce group of retinal image with similar features. For these reasons an unsupervised model for the analysis of retinal image is required, a model that can work without human supervision or interaction. And that is able to perform on retinal images with different characteristics. In this research, we have worked on the development of this type of model. The system locates the eye structures (e.g. optic disc and blood vessels) as first step. Later, these structures are masked out from the retinal image in order to create a clear field to perform the lesion detection. We have selected the Graph Cut technique as a base to design the retinal structures segmentation methods. This selection allows incorporating prior knowledge to constraint the searching for the optimal segmentation. Different link weight assignments were formulated in order to attend the specific needs of the retinal structures (e.g. shape). This research project has put to work together the fields of image processing and ophthalmology to create a novel system that contribute significantly to the state of the art in medical image analysis. This new knowledge provides a new alternative to address the analysis of medical images and opens a new panorama for researchers exploring this research area.
|
2 |
Thermal lensing in ocular mediaVincelette, Rebecca Lee 09 April 2012 (has links)
This research was a collaborative effort between the Air Force Research Laboratory (AFRL) and the University of Texas to examine the laser-tissue interaction of thermal lensing induced by continuous-wave, CW, near-infrared, NIR, laser radiation in the eye and its influence on the formation of a retinal lesion from said radiation. CW NIR laser radiation can lead to a thermal lesion induced on the retina given sufficient power and exposure duration as related to three basic parameters; the percent of transmitted energy to, the optical absorption of, and the size of the laser-beam created at the retina. Thermal lensing is a well-known phenomenon arising from the optical absorption, and subsequent temperature rise, along the path of the propagating beam through a medium. Thermal lensing causes the laser-beam profile delivered to the retina to be time dependent. Analysis of a dual-beam, multidimensional, high-frame rate, confocal imaging system in an artificial eye determined the rate of thermal lensing in aqueous media exposed to 1110, 1130, 1150 and 1318-nm wavelengths was related to the power density created along the optical axis and linear absorption coefficient of the medium. An adaptive optics imaging system was used to record the aberrations induced by the thermal lens at the retina in an artificial eye during steady-state. Though the laser-beam profiles changed over the exposure time, the CW NIR retinal damage thresholds between 1110-1319-nm were determined to follow conventional fitting algorithms which neglected thermal lensing. A first-order mathematical model of thermal lensing was developed by conjoining an ABCD beam propagation method, Beer's law of attenuation, and a solution to the heat-equation with respect to radial diffusion. The model predicted that thermal lensing would be strongest for small (< 4-mm) 1/e² laser-beam diameters input at the corneal plane and weakly transmitted wavelengths where less than 5% of the energy is delivered to the retina. The model predicted thermal lensing would cause the retinal damage threshold for wavelengths above 1300-nm to increase with decreasing beam-diameters delivered to the corneal plane, a behavior which was opposite of equivalent conditions simulated without thermal lensing. / text
|
Page generated in 0.2464 seconds