• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 7
  • 1
  • 1
  • Tagged with
  • 20
  • 9
  • 8
  • 7
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanisms of (bio)surfactant enhanced alkane biodegradation

Beal, Richard Kenneth January 2000 (has links)
No description available.
2

Regulation of rhamnolipid biosynthesis in the Pseudomonas aeruginosa PAOI biofilm population

Du Plessis, David Johannes Francois 18 August 2008 (has links)
Pseudomonas aeruginosa, a ubiquitous environmental bacterium and an opportunistic human pathogen, forms biofilms through a series of interactions between the cells and adherence to surfaces. Not only does rhamnolipid contribute to the pathogenic potential of P. aeruginosa, but it has also been reported that the bacterium utilises rhamnolipid to actively maintain the void spaces surrounding microcolonies, thus contributing to the architecture of P. aeruginosa biofilms. The P. aeruginosa rhlAB operon encodes the enzyme rhamnosyltransferase I, which produces mono-rhamnolipid, and the induction of rhlAB is dependent on the quorum sensing transcription activator RhIR complexed with the auto inducer N-butyryl-homoserine lactone. In this study, several aspects related to rhamnolipid biosynthesis and regulation in P. aeruginosa PAO1 were investigated. As a first step, a biochemical assay was developed and optimised whereby the concentration of rhamnolipid could be accurately quantified following its extraction from small sample volumes. Although the optimised rhamnolipid assay is not able to distinguish between different rhamnolipids or between different homologs of a specific rhamnolipid, it is, however, simple to perform, cost¬effective and does not rely on the use of specialised equipment. Subsequently an rhlAB-deficient mutant strain of P. aeruginosa PAOI strain was generated. For this purpose, three allelic exchange strategies, i.e. plasmid incompatibility, the use of a SacB counter-selectable marker and a combination of these approaches, were investigated by making use of newly constructed allelic exchange vector systems. The results that were obtained indicated that, of the three approaches, the latter was most efficient in generating the desired P. aeruginosa mutant strain, and 90% of the derived strains were found to be double reciprocal mutants. Reporter gene technology, using the genes encoding for stable and unstable variants of the green fluorescent protein (GFP), was finally used to investigate the transcriptional activity of the rhlA promoter in P. aeruginosa biofilms under conditions of continuous flow using glass as substratum. For this purpose, mini-CTX-GFP reporter vectors, containing stable and unstable variants of the gfp reporter gene, were constructed that allow for integration of a single copy of the transcriptional fusion in a defined, non-essential region onto the P. aeruginosa genome. Several global regulators have been reported to playa role in regulating quorum sensing and/or rhamnolipid biosynthesis in P. aeruginosa, amongst other, the sigma factors RpoS and RpoN. Therefore, rhlA promoter activity was also investigated in biofilms of P. aeruginosa strains lacking either RpoN or RpoS. Although structural differences between the biofilms formed by the P. aeruginosa wild-type PAD 1 and respective mutant strains were noted, transcription of rhlA appeared to be constitutive from 24 h onwards and did not appear to be localised to specific areas within the microcolonies or biofilms. These results, combined with those obtained by batch analysis, indicated that RpoS positively regulates rhlA transcription, whilst RpoN did not appear to influence rhlA promoter activity under the conditions used in this study. / Dissertation (MSc)--University of Pretoria, 2009. / Microbiology and Plant Pathology / unrestricted
3

Effect of low-concentration rhamnolipid biosurfactant on P seudomonas aeruginosa transport in natural porous media

Liu, Guansheng, Zhong, Hua, Jiang, Yongbing, Brusseau, Mark L, Huang, Jiesheng, Shi, Liangsheng, Liu, Zhifeng, Liu, Yang, Zeng, Guangming 01 1900 (has links)
Enhanced transport of microbes in subsurface is a focus in bioaugmentation applications for remediation of groundwater. In this study, the effect of low-concentration monorhamnolipid biosurfactant on transport of Pseudomonas aeruginosa ATCC 9027 in natural porous media (silica sand and a sandy soil) with or without hexadecane as the nonaqueous phase liquids (NAPLs) was studied with miscible-displacement experiments using artificial groundwater as the background solution. Transport of two types of cells was investigated, glucose-grown and hexadecane-grown cells with lower and higher cell surface hydrophobicity (CSH), respectively. A clean-bed colloid deposition model was used to calculate deposition rate coefficients (k) for quantitative assessment on the effect of the rhamnolipid on the transport. In the absence of NAPLs, significant cell retention was observed in the sand (81% and 82% for glucose-grown and hexadecane-grown cells, respectively). Addition of low-concentration rhamnolipid enhanced cell transport, with 40 mg/L of rhamnolipid reducing retention to 50% and 60% for glucose-grown and hexadecane-grown cells, respectively. The k values for both glucose-grown and hexadecane-grown cells correlated linearly with rhamnolipid-dependent CSH quantitatively measured using a bacterial-adhesion-to-hydrocarbon method. Retention of cells by the soil was nearly complete (>99%). Forty milligrams per liter of rhamnolipid reduced the retention to 95%. The presence of NAPLs in the sand enhanced the retention of hexadecane-grown cells with higher CSH. Transport of cells in the presence of NAPLs was enhanced by rhamnolipid at all concentrations tested, and the relative enhancement was greater than in the absence of NAPLs. This study shows the importance of hydrophobic interaction on bacterial transport in natural porous media and the potential of using low-concentration rhamnolipid for facilitating cell transport in subsurface for bioaugmentation efforts.
4

Biosurfactant (Monorhamnolipid) Complexation of Metals and Applications for Aqueous Metalliferous Waste Remediation

Hogan, David E., Hogan, David E. January 2016 (has links)
Biosurfactants are compounds that exhibit surface activity (e.g., reduce surface and interfacial tension) and are derived from natural, biological sources. They are considered green substances due to their natural derivation, biodegradability, and relatively low toxicity. Biosurfactants from multiple classes have been shown to interact with metals, and a review of these interactions is provided. Rhamnolipids produced by Pseudomonas aeruginosa are attracting attention for metal remediation applications. The purpose of this dissertation is to evaluate rhamnolipids' ability to complex rare earth elements, determine the environmental compatibility of novel rhamnolipid diastereomers, and assess the efficacy of rhamnolipid as a collector in ion flotation. Previous research shows rhamnolipids selectively bind elements of environmental concern over common soil and water cations, but there had been no examination of transition metals from the f-block of the periodic table. The f-block elements include the rare earth elements, which are a vital component of nearly every modern technology and subject to supply risk. The interaction between monorhamnolipids and the rare earth elements was investigated by determining conditional stability constants using a resin-based ion exchange method. For the 27 metals examined, the conditional stability constants could be divided into three groups, albeit somewhat subjectively: weakly, moderately, and strongly bound. UO22+, Eu3+, Nd3+, Tb3+, Dy3+, La3+, Cu2+, Al3+, Pb2+, Y3+, Pr3+, and Lu3+are strongly bound with conditional stability constants ranging from 9.82 to 8.20; Cd2+, In3+, Zn2+, Fe3+, Hg2+, and Ca2+ are moderately bound with stability constants ranging from 7.17 to 4.10; and Sr2+, Co2+, Ni2+, UO22+, Cs+, Ba2+, Mn2+, Mg2+, Rb+, and K+ are weakly bound with stability constants ranging from 3.95 to 0.96. The uranyl ion is reported twice due to the ion demonstrating two distinct binding regions. The conditional stability constants were demonstrated to be an effective predictor of metal removal order. The metal parameters of enthalpy of hydration and ionic charge to radius ratio were shown to be determinants of complexation strength. Naturally produced rhamnolipids are a mixture of congeners. Synthetic rhamnolipid synthesis has recently enabled production of four monorhamnolipid diastereomers of a single congener. The biodegradability, acute toxicity (Microtox assay), embryo toxicity (Zebrafish assay), and metal binding capacity of the diastereomers was investigated and compared to natural monorhamnolipid. Biodegradability testing showed all the diastereomers were inherently biodegradable. By the Microtox assay, all of the monorhamnolipids were categorized as slightly toxic by Environmental Protection Agency ecotoxicity categories. Out of 22 parameters tested, the zebrafish toxicity assay showed only diastereomer toxicity for the mortality parameter, except for diastereomer R,R which showed no toxic effects. All the monorhamnolipids interacted with both Cd2+ and Pb2+. Ion flotation is one possible technology for metal recovery and remediation of metal contaminated waters. Ion flotation utilizes charged surfactants to collect and concentrate non-surface active ions at the surface of an aerated solution. Rhamnolipid's suitability as a collector in ion flotation was investigated. A flotation column was designed to test monorhamnolipid efficacy as a collector. Monorhamnolipids form foams and effectively remove Cs+, Cd2+, and La3+ from solution. The efficacy of the flotation process relies on the collector:colligend ratio and valency of the colligend. Flotation of metal solutions showed a removal order of Cd2+>La3+>>Cs+ when the metals were present individually and mixed at equimolar concentrations. When mixed at order of magnitude different concentrations, the flotation order was Cd2+>>Cs+>>La3+. These studies show rhamnolipid has potential to be used for environmentally-compatible metal recovery and metalliferous water remediation, especially for the rare earth elements.
5

Biossurfatantes como agentes inibidores da adesão de patógenos em superfícies de poliestireno / Biosurfactants as anti-adhesive compounds of several pathogenic bacteria on polystyrene surfaces

Zeraik, Ana Eliza 13 July 2009 (has links)
O estabelecimento de biofilmes microbianos em superfícies é responsável por inúmeros problemas, já que estes podem constituir uma fonte de microrganismos patogênicos e deteriorantes. A formação dos biofilmes é precedida pela adesão dos microrganismos, assim, medidas que inibem ou reduzem essa adesão contribuem para a redução da formação de biofilmes. Uma alternativa para reduzir a adesão é o tratamento prévio das superfícies com biossurfatantes, agentes tensoativos de origem microbiana que apresentam baixa toxicidade, a vantagem de serem biodegradáveis, possuindo ainda atividade antimicrobiana e antiadesiva. O principal objetivo deste trabalho foi avaliar a potencialidade dos biossurfatantes surfactina e ramnolipídeo como agentes inibidores da adesão de Listeria monocytogenes ATCC 19112, Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Micrococcus luteus ATCC 4698 e Serratia marcescens ATCC 8100 em superfícies de poliestireno. Também foi estudada a influência de diferentes meios de cultura (TSYEA, ágar lactosado e ágar peptonado) e temperaturas (35ºC, 25ºC e 4ºC) sobre a adesão bacteriana. A surfactina apresentou maior capacidade em reduzir a adesão das bactérias em estudo, quando comparada ao ramnolipídeo. O meio TSYEA foi o que promoveu maior adesão ao poliestireno para maioria das bactérias. O condicionamento da superfície com surfactina reduziu entre 63% e 66% a adesão de L. monocytogenes, S. aureus e M. luteus (cultivadas em TSYEA). As melhores respostas antiadesivas foram obtidas quando o condicionamento da superfície e o ensaio de adesão foram realizados a 4ºC. A caracterização das superfícies de poliestireno (medidas de AC) e das superfícies bacterianas (teste MATS) forneceram informações que nos permitiram propor explicações sobre os fatores que influenciam o processo de adesão dos microrganismos nesta superfície, assim como o efeito antiadesivo exibido pela surfactina. Os resultados evidenciam a potencialidade do uso de surfactina como agente antiadesivo em superfícies de poliestireno, podendo atuar na inibição da adesão de vários patógenos. / Development of microbial biofilms on surfaces leads to various problems, since then can be a source of pathogenic microorganisms. Biofilms development are preceded by microbial adhesion, thus, procedures that inhibit or reduce adhesion contribute to reduce biofilm formation. An alternative to decrease bacterial attachment is the preconditioning of surfaces with biosurfactants, surface active products of microbial origin. This group of compounds has low toxicity, are biodegradable and present antimicrobial and anti-adhesive properties. The main goal of this study was to evaluate the potencial use of surfactin and rhamnolipid biossurfactants in the reduction of the adhesion of Listeria monocytogenes ATCC 19112, Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Micrococcus luteus ATCC 4698 and Serratia marcescens ATCC 8100 on polystyrene surfaces. The research was carried out using three different nutritive media (TSYEA, lactose agar and peptone agar) and three different temperatures (35ºC, 25ºC e 4ºC). Surfactin showed a higher capacity to reduce bacterial adhesion than rhamnolipid. When cultivation was performed in TSYEA, most of the bacterial species showed the highest values of adhesion to polystyrene. Surface preconditioning with surfactin reduces 63% to 66% the adhesion of L. monocytogenes, S. aureus e M. luteus (culture media TSYEA). The most significant anti-adhesive results were obtained when both, preconditioning and adhesion assay were carried out at 4ºC. Polystyrene surfaces characterization (contact angle measurements) and bacterial cells characterization (MATS test) provided information that allowed some explanation about the factors that influence microbial adhesion process on this surface and the anti-adhesive effect caused by surfactin. The results showed that surfactin has a great potencial to be used as anti-adhesive compound on polystyrene surfaces, reducing the attachment of several pathogenic bacteria.
6

Biossurfatantes como agentes inibidores da adesão de patógenos em superfícies de poliestireno / Biosurfactants as anti-adhesive compounds of several pathogenic bacteria on polystyrene surfaces

Ana Eliza Zeraik 13 July 2009 (has links)
O estabelecimento de biofilmes microbianos em superfícies é responsável por inúmeros problemas, já que estes podem constituir uma fonte de microrganismos patogênicos e deteriorantes. A formação dos biofilmes é precedida pela adesão dos microrganismos, assim, medidas que inibem ou reduzem essa adesão contribuem para a redução da formação de biofilmes. Uma alternativa para reduzir a adesão é o tratamento prévio das superfícies com biossurfatantes, agentes tensoativos de origem microbiana que apresentam baixa toxicidade, a vantagem de serem biodegradáveis, possuindo ainda atividade antimicrobiana e antiadesiva. O principal objetivo deste trabalho foi avaliar a potencialidade dos biossurfatantes surfactina e ramnolipídeo como agentes inibidores da adesão de Listeria monocytogenes ATCC 19112, Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Micrococcus luteus ATCC 4698 e Serratia marcescens ATCC 8100 em superfícies de poliestireno. Também foi estudada a influência de diferentes meios de cultura (TSYEA, ágar lactosado e ágar peptonado) e temperaturas (35ºC, 25ºC e 4ºC) sobre a adesão bacteriana. A surfactina apresentou maior capacidade em reduzir a adesão das bactérias em estudo, quando comparada ao ramnolipídeo. O meio TSYEA foi o que promoveu maior adesão ao poliestireno para maioria das bactérias. O condicionamento da superfície com surfactina reduziu entre 63% e 66% a adesão de L. monocytogenes, S. aureus e M. luteus (cultivadas em TSYEA). As melhores respostas antiadesivas foram obtidas quando o condicionamento da superfície e o ensaio de adesão foram realizados a 4ºC. A caracterização das superfícies de poliestireno (medidas de AC) e das superfícies bacterianas (teste MATS) forneceram informações que nos permitiram propor explicações sobre os fatores que influenciam o processo de adesão dos microrganismos nesta superfície, assim como o efeito antiadesivo exibido pela surfactina. Os resultados evidenciam a potencialidade do uso de surfactina como agente antiadesivo em superfícies de poliestireno, podendo atuar na inibição da adesão de vários patógenos. / Development of microbial biofilms on surfaces leads to various problems, since then can be a source of pathogenic microorganisms. Biofilms development are preceded by microbial adhesion, thus, procedures that inhibit or reduce adhesion contribute to reduce biofilm formation. An alternative to decrease bacterial attachment is the preconditioning of surfaces with biosurfactants, surface active products of microbial origin. This group of compounds has low toxicity, are biodegradable and present antimicrobial and anti-adhesive properties. The main goal of this study was to evaluate the potencial use of surfactin and rhamnolipid biossurfactants in the reduction of the adhesion of Listeria monocytogenes ATCC 19112, Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Micrococcus luteus ATCC 4698 and Serratia marcescens ATCC 8100 on polystyrene surfaces. The research was carried out using three different nutritive media (TSYEA, lactose agar and peptone agar) and three different temperatures (35ºC, 25ºC e 4ºC). Surfactin showed a higher capacity to reduce bacterial adhesion than rhamnolipid. When cultivation was performed in TSYEA, most of the bacterial species showed the highest values of adhesion to polystyrene. Surface preconditioning with surfactin reduces 63% to 66% the adhesion of L. monocytogenes, S. aureus e M. luteus (culture media TSYEA). The most significant anti-adhesive results were obtained when both, preconditioning and adhesion assay were carried out at 4ºC. Polystyrene surfaces characterization (contact angle measurements) and bacterial cells characterization (MATS test) provided information that allowed some explanation about the factors that influence microbial adhesion process on this surface and the anti-adhesive effect caused by surfactin. The results showed that surfactin has a great potencial to be used as anti-adhesive compound on polystyrene surfaces, reducing the attachment of several pathogenic bacteria.
7

ProduÃÃo de biossurfactantes a partir da glicerina obtida da produÃÃo de biodiesel / Production of biosurfactants from glycerin obtained from biodiesel production

Juliana Rabelo de Sousa 28 February 2008 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / O objetivo deste trabalho foi avaliar a glicerina resultante da transesterificaÃÃo do Ãleo de mamona como fonte de carbono e nutrientes para P. aeruginosa LAMI. O efeito da concentraÃÃo de nutrientes e de condiÃÃes ambientais foi avaliado de acordo com dois planejamentos fatoriais completos sobre o crescimento celular, produÃÃo de biossurfactante e propriedades tensoativas do surfactante produzido. A anÃlise estatÃstica dos dados foi realizada pelo software Statistica 6.0. Avaliou-se o efeito da concentraÃÃo de glicerina e de nitrato de sÃdio e do tamanho do inÃculo, de acordo com um planejamento fatorial 23. Uma anÃlise dos efeitos mostrou que o aumento da concentraÃÃo de nitrato e a reduÃÃo da concentraÃÃo de glicerina favoreceram a produÃÃo de biossurfactantes atingindo-se uma concentraÃÃo mÃxima de 1,6 g/L de ramnose. A partir deste resultado, realizou-se um planejamento fatorial completo 24 avaliando-se os fatores concentraÃÃo de nitrato e de fosfato, pH e temperatura. Os resultados mostraram que a reduÃÃo da razÃo carbono/nitrogÃnio (C/N), com um Ãtimo equivalente a 12, favoreceu a produÃÃo de ramnolipÃdeos por P. aeruginosa LAMI, bem como a reduÃÃo da concentraÃÃo de fosfato em pH 7,0 e temperatura de 37 ÂC. Nestas condiÃÃes obteve-se 2,3 g/L de ramnose, atingindo-se coeficientes de rendimento em termos de substrato (YP/S) e de biomassa (YP/X) de 0,103 g/g e 3,13 g/g,respectivamente. A produtividade volumÃtrica mÃxima foi 31,94 mg/Lh. A cinÃtica de crescimento celular e produÃÃo de biossurfactantes foi avaliada, variando-se a razÃo C/N de 21 a 86. Os perfis de produÃÃo de biomassa e de ramnolipÃdeos sugeriram uma cinÃtica mista, semiassociada ao crescimento. O biossurfactante obtido de acordo com a melhor condiÃÃo de cultivo foi capaz de formar emulsÃes com querosene, Ãleo de soja, Ãster metÃlico e Ãleo naftÃnico, com Ãndice de emulsificaÃÃo de, aproximadamente, 60 %. Uma atividade emulsificante equivalente a 3,25 unidades mostrou que o biossurfactante foi capaz de formar emulsÃes Ãleo-Ãgua. O biossurfactante foi extraÃdo do meio de cultivo livre de cÃlulas e submetido a purificaÃÃo por cromatografia. A cromatografia em camada delgada mostrou a presenÃa de dois produtos majoritÃrios. O espectro de ressonÃncia magnÃtica nuclear H1 apresentou deslocamentos quÃmicos caracterÃsticos de grupamentos quÃmicos que constituem uma molÃcula de diramnolipÃdeo tipo Rha-Rha-C10C10. Entretanto, a elucidaÃÃo completa da estrutura do ramnolipÃdeo deve ser complementada por anÃlises espectroscÃpicas de maior resoluÃÃo / The aim of this work was analysing the glycerine from castor oil transesterification as a source of carbon and nutrients to P. aeruginosa LAMI. Nutrients concentration and environmental conditions were studied using two complete factorial planning, with cellular growth, biosurfactant production and product surface active properties as response variables. The statistic analysis was done using the software Statistica 6.0. First of all, inoculum size and concentrations of glycerine and NaNO3 were analysed with a 23 factorial planning. The increase in nitrate concentration and a decrease in glycerine concentration favored biosurfactants production, reaching a maximum rhamnose concentration of 1.6 g/L. A complete 24 factorial planning was planned based on these results. Nitrate and phosphate concentrations, pH and temperature were selected factors. Results showed that a decrease in carbon/nitrogen ratio, with an optimum of 12, and phosphate concentration favored rhamnolipid production by P. aeruginosa LAMI at pH 7,0 and 37 ÂC. A rhamnose concentration of 2.3 g/l was obtained, with product yields on substrate and biomass of 0.103 and 3.13g/g,respectively. The volumetric productivity was 31.94 mg/L.h. The influence of carbon/nitrogen ration, from 21 to 86, on growth kinetics and biosurfactant production was studied. Biomass and rhamnolipids production behavior suggest a mixed kinetics, semi-associated to growth. The biosurfactant produced using the optimized conditions formed emulsions with kerosene, soybean oil, methyl esters (biodiesel) and naphtenic oil, with emulsification index of about 60%. An emulsification activity of 3.25 units was also obtained, showing that the biosurfactant may be used to forme oil-water emulsions. Finally, the biosurfactant was extracted from a free-cell fermented medium and submited to chromatographic purification. The analytical thin layer chromatography showed the presence of two mainly products. The H1 nuclear magnetic spectra showed characteristic signals of chemical groups that are typical of a dirhamnolipid Rha-Rha-C10C10 molecule. However, a complete explanation of the rhamnolipid structure must be completed by high resolution spectroscopy analysis
8

Metabolism of <i>Pseudomonas Aeruginosa</i> Under Simultaneous Aerobic Respiration and Denitrification

Chen, Fan January 2005 (has links)
No description available.
9

Online Monitoring of Aerobic Denitrification of <i>Pseudomonas Aeruginosa</i> by NAD(P)H Fluorescence

Xia, Qing 18 May 2006 (has links)
No description available.
10

Optimization of Production and Recovery of Rhamnolipids and Study of Their Effect on Bacterial Attachment

Sodagari, Maysam January 2013 (has links)
No description available.

Page generated in 0.0401 seconds