31 |
Molecular genetic characterization of polyhydroxyalkanoate metabolism in Rhizobium (Sinorhizobium) melilotiAneja, Punita January 1999 (has links)
No description available.
|
32 |
Characterization of the nod and sdh operons in the legume symbionts Bradyrhizobium japonicum and Sinorhizobium melilotiD'Aoust, Frédéric. January 2005 (has links)
No description available.
|
33 |
Characterization of the nod and sdh operons in the legume symbionts Bradyrhizobium japonicum and Sinorhizobium melilotiD'Aoust, Frédéric. January 2005 (has links)
This study was undertaken to characterize the nod and sdh operons of Bradyrhizobium japonicum and Sinorhizobium meliloti. Ten putative B. japonicum mutants with altered nod gene induction characteristics were isolated by screening mutants for genistein-independent nod gene expression. The mutants were found to have higher nodY expression than the wild-type in the presence of genistein. The increased sensitivity of all mutants to genistein was more apparent under suboptimal inducer concentration (0.1muM) and/or temperature (15°C). The expression of nodY gene induction was determined for five strains (Bj30050, 53, 56, 57, 58) under different temperature and inducer conditions. These five strains were also found to produce more lipochitooligosaccharide than the wild-type, at both 25°C and 15°C. Three of the ten mutant strains (including Bj30056 and 57) were unable to fix nitrogen with soybeans grown at optimal temperatures. Based on nodY gene expression and symbiotic phenotype the B. japonicum mutants were classified into three groups. / A molecular genetic approach was taken to investigate the regulation of expression of succinate dehydrogenase (SDH) in S. meliloti. The sdhCDAB genes encoding SDH were shown by RT-PCR to be co-transcribed and thus constitute an operon. The transcriptional start site and putative promoter region of the first gene in the operon, sdhC , were identified by 5'-RACE and DNA sequence analysis. Transcriptional lacZ fusions to sdhC indicated that expression of the operon is regulated by carbon source in the growth medium but not by growth phase. The highest expression of the sdh operon was observed in cells grown with acetate, arabinose and glutamate, as sole carbon sources, and the lowest expression was observed in cells grown with glucose and pyruvate as sole carbon sources. / Also presented is the isolation and characterization of the first defined sdh mutant in a rhizobial species. The mutants helped demonstrate that the total lack of SDH activity would be lethal to S. meliloti cells. Symbiotic phenotype of the mutants indicated that SDH is required for N2-fixation.
|
34 |
A laboratory study on the development and testing of a bioaugmentation system for contaminated soils /Mehmannavaz, Reza. January 1999 (has links)
The primary objective of this study was to investigate the use of water table management (WTM) as a microbial delivery system for in-situ bioaugmentation of contaminated soils. In addition, the use of Rhizobium ( R.) for PCB degradation in soils was evaluated. / First, the presence and isolation of a variety of strains of Rhizobium meliloti was demonstrated using plant nodulation tests on alfalfa plants in soils that were contaminated for over 15 years with PCBs, PAHs and heavy metals. Next, R. meliloti, strain A-025, was selected based on its membrane (hydrophobicity, adhesion) characteristics and its potential to transform PCBs. This strain was delivered and implanted in sod columns, 200 mm in diameter x 1000 mm in length, packed with a sandy loam soil, using surface and subirrigation. The results of this study showed that subirrigation led to a higher number and a more uniform distribution of the bacterial cells in the soil at 60, 300, 500, and 700 mm depths, than surface irrigation. / In a different setup, similar column were packed with a PCB contaminated soil. These soil columns were bioaugmented with three bacterial cultures, i.e., R. meliloti (strain A-025), Comomonas testosteroni (strain B-356) and an indigenous bacterial consortium using subirrigation. The results indicated that bioaugmentation of the PCB contaminated soil was possible by using subirrigation. Bioaugmentation with the indigenous culture was observed to be more effective in the biodegradation of PCBs than with A-025 and B-356 cultures at 140 and 340 mm depths. However, at 590 mm depth, bioaugmentation with strain A-025 was observed to be better than the other treatments. Sequential aerobic and anaerobic cycles appear to be of significance for effective dechlorination of PCB congeners to lower chlorinated congeners. / In a separate exploratory study, the rhizospheric effects of alfalfa plants on R. meliloti for PCB depletion were investigated. The results suggest that the growth of alfalfa plants and bioaugmentation of soil with R. meliloti, strain A-025, increased the depletion of PCB congeners in the soil as compared to bioaugmentation alone. In other preliminary studies, the results showed that the presence of PCBs in a sandy loam soil increases the filtration of bacterial cells. Also, soil type and the presence of PCBs affected water infiltration, moisture, and hardness of the soil. Furthermore, water table management system along with bioaugmentation of soil columns with R. meliloti, strain A-025, decreased the concentration of atrazine by 31% during anaerobic and aerobic cycles and reduced the concentration of nitrate by 87% and 78% in the absence and presence of atrazine, respectively, in the drainage water. / The overall results of this work indicate that water table management (subirrigation) can be used for bioaugmentation of contaminated soils. Also, use of R. meliloti may prove to be an interesting option for soils contaminated with PCBs, atrazine and nitrate.
|
35 |
Regulation and expression of the mdh-sucCDAB operon of Sinorhizobium melilotiSteven, Blaire January 2003 (has links)
The genes encoding malate dehydrogenase (mdh), succinyl-CoA synthetase (sucCD), and subunits of 2-oxoglutarate dehydrogenase (sucAB) constitute an operon in the order mdh-sucCDAB in Sinorhizobium meliloti. Regulation of the operon was studied using beta-galactosidase gene fusions. Expression of the operon was assayed in response to the carbon source provided, and over the growth of the culture. A promoter upstream of the mdh gene was identified, and although the promoter was active in S. meliloti it was not expressed in Escherichia coli. It was demonstrated that the role of 2-oxoglutarate dehydrogenase (OGD) is minimal in symbiosis, as nodules with no OGD activity formed nodules able to fix nitrogen. Alfalfa plants inoculated with strains of S. meliloti carrying extra-chromosomal copies of the mdh gene did not show any increase in shoot dry weight compared to plants inoculated with the wild-type strain.
|
36 |
Characterization of the NADP+-dependent malic enzyme of Sinorhizobium (Rhizobium) meliloti and investigations into the requirements of malate uptake and malic enzyme activity in bacteroids /Mitsch, Michael James January 2001 (has links)
Thesis (Ph.D.) -- McMaster University, 2001. / Includes bibliographical references. Also available via World Wide Web.
|
37 |
NMR-spektroskopische Charakterisierung des Responsregulators CheY2 aus Sinorhizobium melilotiRiepl, Hubert January 2004 (has links)
Regensburg, Univ., Diss., 2003. / Erscheinungsjahr an der Haupttitelstelle: 2002.
|
38 |
Genomweite Analysen von Gen-Clustern zur ABC-Transport-vermittelten Eisenaufnahme bei Sinorhizobium-meliloti-Stamm Rm1021Buhrmester, Jens. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2004--Bielefeld.
|
39 |
Molekularbiologische Charakterisierung des ExpG-Proteins aus Sinorhizobium meliloti und Untersuchungen zur komplexen Regulation der exp-Genexpression durch MucR, PhoB und ExpGBaumgarth, Birgit. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2004--Bielefeld.
|
40 |
Identification and characterization of an incomplete root hair elongation (IRE)-like gene in Medicago truncatula (L.) root nodules.Pislariu, Catalina Iulia 05 1900 (has links)
Cloning and molecular characterization of new genes constitutes a useful approach in studying the symbiotic interactions between the model plant Medicago truncatula and Synorhizobium meliloti. Large numbers of expressed sequence tags (ESTs) available for Medicago truncatula, along with numerous cDNA, oligonucleotides, and Affimetrix DNA microarray chips, represent useful tools for gene discovery. In an attempt to identify a new gene that might be involved in the process of nodulation in Medicago truncatula, preliminary data reported by Fedorova et al. (2002), who identified 340 putative gene products or tentative consensus sequences (TCs) expressed only in nodules, was used. This research was focused on TC33166 (TC103185), which has 3 ESTs in the TC, and whose strongest BLASTX hit of TC103185 is the incomplete root hair elongation (IRE) protein kinase-like protein (NP_192429) from Arabidopsis thaliana. The Arabidopsis IRE gene is required for normal root hair growth, and a role in apical growth was suggested (Oyama et al., 2002). Infection thread growth can be looked at as an inward growth of the root hair. Thus, TC103185 was a good candidate for identifying a gene that may be involved in early events of nodulation. MtIRE (GenBank accession AC122727) is organized in 17 exons and 16 introns, similarly to the Arabidopsis IRE gene. MtIRE is a new member of the IRE family and it is a putative Ser/Thr protein kinase. MtIRE is a nodule- and flower-specific gene, suggesting that nodulation may have recruited it from other developmental processes. MtIRE is likely to be involved in the invasion process, or in the maturation of the symbiosome, or of the cells that contain rhizobia, rather than infection thread initiation and elongation or in nitrogen fixation. Nodule invasion precedes the onset of MtIRE expression and the expression pattern changes in time within the nodule. RNA interference results support MtIRE expression data and suggest a possible role in preventing extensive defense responses. Our study demonstrates the existence of an Arabidopsis IRE homolog in Medicago truncatula root nodules with an entirely new function and regulation.
|
Page generated in 0.0351 seconds