• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulations des grandes échelles pour la prédiction des écoulements de refroidissement des pales de turbines / Large Eddy Simulations to predict internal turbine blade cooling flows

Grosnickel, Thomas 11 February 2019 (has links)
Les concepteurs de moteurs aéronautiques sont constamment sujets à la demande d’augmentation de puissance de la part des constructeurs d’aéronefs. Pour satisfaire à cette exigence, la température de sortie de la chambre de combustion peut être augmentée pour améliorer le rendement et la puissance de sortie du moteur. Cette élévation de température peut toutefois dépasser le point de fusion du matériau et, pour éviter les pannes de moteur, l’intégrité des aubes de la turbine repose notamment sur des systèmes de refroidissement internes,prélevant de l'air froid du compresseur. La conception de ces systèmes revient donc à maximiser l’amélioration du transfert de chaleur tout en minimisant le débit d’air via les pertes de charge afin d’éviter des pénalités de puissance du moteur. Or ces écoulements en canaux internes sont encore largement incontrôlés et mal compris. Dans le but de mieux comprendre ces écoulements en rotation se développant spatialement, ce travail porte sur l’étude via simulations numériques d’un canal de refroidissement droit, perturbé, en rotation. La configuration consiste en un canal carré équipé de 8 perturbateurs placés avec un angle de 90 degrés par rapport à l’écoulement principal. Pour les cas étudiés, des mesures PIV temporelles ont été effectuées à l'Institut VanKarman (VKI). Les conditions adiabatiques et isothermes ont été étudiées pour évaluer l’impact dela température de la paroi sur l’écoulement, en particulier dans les configurations en rotation. Les canaux statiques ainsi qu’en rotation positive et négative sont comparés avec, dans chaque cas,une prédiction d’écoulement adiabatique ou isotherme. Dans ce travail, les résultats de simulations aux grandes échelles (SGE) montrent que le modèle CFD haute fidélité est capable de reproduire les différences induites par la flottabilité sur la topologie de l'écoulement dans la région proche. Le modèle parvient également à prévoir l'augmentation (la diminution) de la turbulence autour des perturbateurs en rotation déstabilisante (stabilisante). Enfin et grâce à la SGE spatiale et temporelle complète, le développement spatial et l’instationnarité des écoulements secondaires sont analysés pour mieux comprendre leur origine et leurs différences potentielles entre les cas. Cette étude montre que la topologie du flux thermique en parois est déterminée par la structure des écoulements secondaires alors que l’intensité du flux thermique aux parois est déterminée par le niveau de fluctuations de l’écoulement dans l’espace interperturbateur / Aeronautical engine designers are constantly subject to increasing power demands from aircraft manufacturers. To satisfy this requirement, combustor outlet temperature can be increased to improve efficiency and output energy of the engine. This rise in temperature however can surpass the material melting point and to avoid engine failure, turbine blades rely on internal cooling systems. Turbine blade cooling often uses internal channels, taking cold air from the compressor flow. Design of these systems therefore resumes to maximizing heat transfer enhancement while minimizing airflow rate to avoid engine power penalties. However, such flows are still largely uncontrolled and miss-understood. In an attempt to better understand such spatially developing rotating flows, the present study deals with a computational investigation on a straight, rotating rib roughened cooling channel. The configuration consists in a squared channel equipped with 8 ribs turbulators placed with an angle of 90 degrees with respect to the flow direction. For the studied cases, time resolved two-dimensional Particle Image Velocimetry (PIV) measurements have been performed at the Van Karman Institute (VKI). Adiabatic as well as isothermal conditions have been investigated to evaluate the impact of the wall temperature on the flow, especially in the rotating configurations. Static as well as both positive and negative rotating channels are compared with, in each case, either an adiabatic or an isothermal flow prediction. In this work, Large Eddy Simulation (LES) results show that the high fidelity CFD model is able to reproduce the differences induced by buoyancy on the flow topology in the near rib region and resulting from an adiabatic or an isothermal flow in rotation. The model manages also to predict the turbulence increase (decrease) around the rib in destabilizing (stabilizing) rotation of the ribbed channels. Finally and thanks to the full spatial and temporal description produced by LES, the spatial development and the unsteadiness of secondary flows are analyzed to better understand their origin and potential differences in all a cases. This study shows that the wall heat flux topology is driven by the secondary flows structure and the wall heat flux intensity is driven by the level of flow fluctuations in the ribbed region
2

Heat Transfer Estimation of Ribbed Internal Cooling Channels for Gas Turbine Blades using CFD : A validation and comparison of different RANS turbulence models

Broberg, Viktor, Eklöw, Georg January 2024 (has links)
Gas turbine blades operate in very high temperatures to achieve a high thermal efficiency of the engine. For this reason, the blades have to be cooled to prevent degradation or even melting. The blades can be cooled using various techniques, both by cooling the inside of the blade with cooling channels, and by protecting the outside of the blade from the hot environment. One way to cool the blades from the inside is with rib turbulated channels. Straight square channels lined with 90◦, 45◦ and V-shaped ribs in a staggered configuration are investigated in this thesis.  Computational fluid dynamics (CFD), among other methods, can be used to predict important parameters such as heat transfer and pressure loss for different ribbed channel geometries. In this thesis a CFD model using RANS simulations with the turbulence models Lag Elliptic Blending k − ε, Realizable k − ε two-layer and SST k − ω is established and validated against experimental data by Taslim et al [1]. This is done by comparing the Nusselt number between a pair of ribs as well as the channel friction factor for 90◦, 45◦ and V-shape ribs. Different sensitivities are also investigated to get an understanding of the uncertainties found during the CFD implementation. These include the effect of mesh resolution, inlet turbulence intensity, rounded rib edges, wall roughness and temperature used for Reynolds number calculations. The Nusselt number and friction factor predictions of the turbulence models are also compared with existing empirical correlations.  The results of the investigation show that the CFD results for 90◦ ribs deviate the most from experimental results, while closer results are seen for the 45◦ and V-shape ribs.  In conclusion, the Lag Elliptic Blending k−ε model generally produces results closest to experimental data, especially for 90◦ ribs, but it shows some differences in Reynolds number trends. It proves to predict heat transfer and pressure loss closer to the experiment than the other models in flows where recirculation and reattachment has a significant impact. The Lag EB model is relatively stable and mesh independent. The SST k − ω model produces results rather similar to experimental data, but is unstable and sensitive to mesh resolution. The Realizable k − ε two-layer model produces results that are slightly less consistent with experimental data, but is very stable and insensitive to mesh resolution. The Nusselt number and friction factor from the investigated empirical correlations are closer to experimental results than the turbulence models for 90◦ inline ribs.

Page generated in 0.0356 seconds