• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 3
  • 1
  • 1
  • Tagged with
  • 21
  • 10
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

ANALYSIS OF HYBRID FDMA/CDMA SYSTEMS IN RICIAN FADING

Haiou, Zheng, Naitong, Zhang 10 1900 (has links)
International Telemetering Conference Proceedings / October 25-28, 1999 / Riviera Hotel and Convention Center, Las Vegas, Nevada / In this paper, a hybrid frequency division multiple access/code division multiple access (FDMA/CDMA) system in a Rician fading channel is described and analysis. The performance of the hybrid system is compared with a wideband CDMA system, which occupies the same total bandwidth. The results show that for DPSK modulation with a RIKE receiver, a hybrid system can have a greater capacity with a strong direct path component or a high signal to noise ratio (SNR). Otherwise, a wideband system remains optimal.
2

Fast Power Allocation Algorithms for Adaptive MIMO Systems.

Chung, Jong-Sun January 2009 (has links)
Recent research results have shown that the MIMO wireless communication architecture is a promising approach to achieve high bandwidth efficiencies. MIMO wireless channels can be simply defined as a link for which both the transmitting and receiving ends are equipped with multiple antenna elements. Adaptive modulation and power allocation could be used to further improve the performance of MIMO systems. This thesis focuses on developing a fast and high performance power allocation algorithm. Three power allocation algorithms are proposed in this thesis and their performances are compared in various system sizes and transceiver architectures. Among the three algorithms proposed in this thesis, the fast algorithm may be considered as the best power allocation algorithm since the performance of the fast algorithm is almost as good as the fullsearch (optimal)algorithm and the mean processing time is considerably less than the fullsearch algorithm. The fast algorithm achieves about 97.6% agreement with the optimal throughput on average. In addition, the time taken to find the power scaling factors using the fullsearch algorithm is about 2300 times longer than the processing time of the fast algorithm in a 6 x 6 system when the SNR is 20dB. As an extension to the power allocation process, excess power allocation methods are introduced. Excess power is the unused power during the power allocation process. The power allocation algorithm allocates power to each received SNR to maximize the throughput of the system whereas the excesspower allocation distributes the excess power to each SNR to improve both the instantaneous and temporal behavior of the system. Five different excess power allocation methods are proposed in this thesis. These methods were simulated in the Rayleigh fading channel with different Doppler frequencies, fD = 10Hz,50Hz and 100Hz, where the ACF of the channel coefficients are given by the Jakes' model. The equal BER improvement method showed a slightly better performance than the other methods. The equal BER improvement method enables the system to maintain the power scaling factors without sacrificing QoS for 19.6 ms on average when the maximum Doppler shift is 10Hz.
3

OPTIMAL TRAINING PARAMETERS FOR CONTINUOUSLY VARYING MIMO CHANNELS

Potter, Christopher G., Panagos, Adam G., Kosbar, Kurt, Weeks, William 10 1900 (has links)
ITC/USA 2005 Conference Proceedings / The Forty-First Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2005 / Riviera Hotel & Convention Center, Las Vegas, Nevada / To correctly demodulate a signal sent through a multiple-input multiple-output (MIMO) channel, a receiver may use training to learn the channel parameters. The choice of training parameters can significantly impact system performance. Training too often yields low throughput while training infrequently produces poor channel estimates and increased transmission errors. Previous work on optimal training parameters has focused on the block fading Rayleigh model. This work examines a more general case; finding the training parameters that maximize throughput for a continuously varying channel. Training parameters that maximize a lower bound on channel capacity are determined via simulation, and general guidelines are presented for selecting optimal training parameters.
4

Statistical classification of magnetic resonance imaging data

Acosta Mena, Dionisio M. January 2001 (has links)
No description available.
5

Fundamental Limits of Non-Coherent Rician Fading Channels with 1-Bit Output Quantization

Wijeratne, Dissanayakage Geethika Sonali January 2017 (has links)
No description available.
6

Performance Analysis of the Uplink of Multi-antenna Systems Operating in Aging Channels / Prestandaanalys av upplänken av multi-antennsystem som arbetar i åldrande kanaler

Putranto, Prasetyo January 2023 (has links)
In wireless communications, employing pilot symbols enables to estimate the state of the wireless channel at the expense of decreasing the number of symbols available for transmitting data. Addressing this trade-off is particularly challenging when the channel changes rapidly over time, since channel estimates become obsolete over short transmission periods. This master thesis proposes an analytical model to characterize this trade-off and develops an algorithm to find the near-optimal pilot spacing in terms of the achieved over spectral efficiency. This algorithm is simulated in a cellular system that serves uncrewed aerial vehicles. Numerical results indicate that the altitude of the uncrewed aerial vehicle, the Rician factor, the Doppler frequency, and the number of receive antennas influence the overall spectral efficiency and consequently, pilot spacing should take into account these system parameters. / I trådlös kommunikation möjliggör användning av pilotsymboler att uppskatta tillståndet för den trådlösa kanalen på bekostnad av att minska antalet tillgängliga symboler för att överföra data. Att ta itu med denna avvägning är särskilt utmanande när kanalen ändras snabbt över tiden, eftersom kanaluppskattningar blir föråldrade under korta överföringsperioder. Denna masteruppsats föreslår en analytisk modell för att karakterisera denna avvägning och utvecklar en algoritm för att hitta det närmast optimala pilotavståndet i termer av uppnådd över spektral effektivitet. Denna algoritm simuleras i ett cellulärt system som betjänar obemannade flygfarkoster. Numeriska resultat indikerar att höjden för det obemannade luftfartyget, Rician-faktorn, Dopplerfrekvensen, antalet mottagarantenner påverkar den totala spektrala effektiviteten och följaktligen bör pilotavståndet ta hänsyn till dessa systemparametrar.
7

Bandwidth Efficient Signaling Using Multiscale Wavelet Functions and its Performance in a Rician Fast Fading Channel Employing Differential Detection

Moon, Todd K., Lo, Chet 10 1900 (has links)
International Telemetering Conference Proceedings / October 25-28, 1999 / Riviera Hotel and Convention Center, Las Vegas, Nevada / In this paper, orthogonal wavelets are employed to produce multiscale signaling. It is shown that signaling using these functions is bandwidth efficient compared other signaling schemes, including SFSK and GMSK. For signaling in Rician fast fading channel, it is also shown that scaling functions is superior in term of achieving low level of probability of error. Even for multiscale signaling, the level probability of error achieved by using wavelet is lower than conventional flat-top signaling. The benefits are largest for channels with small B(D)T , in which the degradation due to fading is most severe.
8

Asymptotic Statistics of Channel Capacity for Amplify-and-Forward MIMO Relay Systems

Hsu, Chung-Kai 17 July 2012 (has links)
In this thesis, we address the statistics of mutual information of amplify-and-forward (AF) multiple-input multiple-output (MIMO) two-hop relay channels, where the source terminal (ST), relay terminal (RT) and destination terminal (DT) are equipped with a number of correlated antennas and there is a line-of-sight (LOS) component (Rician fading) of each link. To the best of our knowledge, deriving analytical expressions for the statistics of mutual information of the relay channel is difficult and still unsolvable. To circumvent the mathematical difficulties, we consider this problem under the large-system regimen in which the numbers of antennas at the transmitter and receiver go to infinity with a fixed ratio. In the large-system regimen, this thesis has made the following contributions: 1) We get the mean and the variance of the mutual information of the concerned relay channel. 2) We show that the mutual information distribution converges to the Gaussian distribution. The analytical results are derived by mean of two powerful tools developed in the context of theoretical physics: emph{saddle-point approximation} and emph{superanalysis}. The derived analytical results are very general and can degenerate to several previously results as special cases. From a degenerated case, we realize that the previous result by Wagner {em et al.} cite{Wag-08} is wrong and thus we provide the corrected result. Finally, Simulation results demonstrate that even for a moderate number of antennas at each end, the proposed analytical results provide undistinguishable results as those obtained by Monte-Carlo results.
9

Antenna Selection and Deployment Strategies for Indoor Wireless Communication Systems

Wong, Alex H. C. January 2007 (has links)
Effective antenna selection and deployment strategies are important for reducing co-channel interference in indoor wireless systems. Low-cost solutions are essential, and strategies that utilise simple antennas (such as directional patches) are advantageous from this perspective. However, performance is always an issue and the improvements achievable through clever antenna deployment need to be quantified. In this thesis, an experimental investigation of indoor propagation comparing the performance of directional antennas and multiple-element arrays (MEAs) with omni-directional antennas is reported. Estimation of the performance of a direct sequence code division multiple access (DS-CDMA) system operating in a variety of deployment scenarios allows the identification of a range of performance-limiting factors and the optimal deployment strategies. It is shown that the orientation of single-element directional antennas can significantly impact on system performance compared to omni-directional antennas in traditional systems. The deployment of MEAs with an active diversity combining scheme can further improve system performance by more than one order of magnitude. From the perspective of system planning, the choice of antenna selection and deployment options depends on the current and future demand for system performance and the financial resources available. An evolutionary path has been proposed to provide a smooth transition from conventional (low-cost) to high-performance (high-cost) antenna systems as demand dictates. Other performance-limiting factors in indoor wireless systems include the physical environment and external interference. It is also shown that electromagnetically-opaque obstacles in the environment can amplify the effectiveness of the antenna deployment by acting as physical zone boundaries that restrict interference. External interference has been shown to cause a significant degradation to the performance of an indoor system when the carrier-to-external-interference ratio (CEIR) is below 30 dB. This performance degradation can be minimised by appropriate antenna deployment, although the optimum antenna orientations depends on the strength of the external interference.
10

Antenna Selection and Deployment Strategies for Indoor Wireless Communication Systems

Wong, Alex H. C. January 2007 (has links)
Effective antenna selection and deployment strategies are important for reducing co-channel interference in indoor wireless systems. Low-cost solutions are essential, and strategies that utilise simple antennas (such as directional patches) are advantageous from this perspective. However, performance is always an issue and the improvements achievable through clever antenna deployment need to be quantified. In this thesis, an experimental investigation of indoor propagation comparing the performance of directional antennas and multiple-element arrays (MEAs) with omni-directional antennas is reported. Estimation of the performance of a direct sequence code division multiple access (DS-CDMA) system operating in a variety of deployment scenarios allows the identification of a range of performance-limiting factors and the optimal deployment strategies. It is shown that the orientation of single-element directional antennas can significantly impact on system performance compared to omni-directional antennas in traditional systems. The deployment of MEAs with an active diversity combining scheme can further improve system performance by more than one order of magnitude. From the perspective of system planning, the choice of antenna selection and deployment options depends on the current and future demand for system performance and the financial resources available. An evolutionary path has been proposed to provide a smooth transition from conventional (low-cost) to high-performance (high-cost) antenna systems as demand dictates. Other performance-limiting factors in indoor wireless systems include the physical environment and external interference. It is also shown that electromagnetically-opaque obstacles in the environment can amplify the effectiveness of the antenna deployment by acting as physical zone boundaries that restrict interference. External interference has been shown to cause a significant degradation to the performance of an indoor system when the carrier-to-external-interference ratio (CEIR) is below 30 dB. This performance degradation can be minimised by appropriate antenna deployment, although the optimum antenna orientations depends on the strength of the external interference.

Page generated in 0.0428 seconds