• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • Tagged with
  • 15
  • 15
  • 11
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Enhancing wireless communication system performance through modified indoor environments

Qasem, Nidal January 2014 (has links)
This thesis reports the methods, the deployment strategies and the resulting system performance improvement of in-building environmental modification. With the increasing use of mobile computing devices such as PDAs, laptops, and the expansion of wireless local area networks (WLANs), there is growing interest in increasing productivity and efficiency through enhancing received signal power. This thesis proposes the deployment of waveguides consisting of frequency selective surfaces (FSSs) in indoor wireless environments and investigates their effect on radio wave propagation. The received power of the obstructed (OBS) path is attenuated significantly as compared with that of the line of sight (LOS) path, thereby requiring an additional link budget margin as well as increased battery power drain. In this thesis, the use of an innovative model is also presented to selectively enhance radio propagation in indoor areas under OBS conditions by reflecting the channel radio signals into areas of interest in order to avoid significant propagation loss. An FSS is a surface which exhibits reflection and/or transmission properties as a function of frequency. An FSS with a pass band frequency response was applied to an ordinary or modified wall as a wallpaper to transform the wall into a frequency selective (FS) wall (FS-WALL) or frequency selective modified wall (FS-MWALL). Measurements have shown that the innovative model prototype can enhance 2.4GHz (IEEE 802.11b/g/n) transmissions in addition to the unmodified wall, whereas other radio services, such as cellular telephony at 1.8GHz, have other routes to penetrate or escape. The FSS performance has been examined intensely by both equivalent circuit modelling, simulation, and practical measurements. Factors that influence FSS performance such as the FSS element dimensions, element conductivities, dielectric substrates adjacent to the FSS, and signal incident angles, were investigated. By keeping the elements small and densely packed, a largely angle-insensitive FSS was developed as a promising prototype for FSS wallpaper. Accordingly, the resultant can be modelled by cascading the effects of the FSS wallpaper and the ordinary wall (FSWALL) or modified wall (FS-MWALL). Good agreement between the modelled, simulated, and the measured results was observed. Finally, a small-scale indoor environment has been constructed and measured in a half-wave chamber and free space measurements in order to practically verify this approach and through the usage of the deterministic ray tracing technique. An initial investigation showing that the use of an innovative model can increase capacity in MIMO systems. This can be explained by the presence of strong multipath components which give rise to a low correlated Rayleigh Channel. This research work has linked the fields of antenna design, communication systems, and building architecture.
2

Indoor CM and MM wave propagation and diversity techniques

Ghobadi, Ch January 1998 (has links)
No description available.
3

Code Acquisition of a DS/SS Signal with Transmit and Receive Antenna Diversity

Ikai, Youhei, Katayama, Masaaki, Yamazato, Takaya, Ogawa, Akira 12 1900 (has links)
No description available.
4

Indoor localization using received signal strength

Obeidat, Huthaifa A.N., Abd-Alhameed, Raed, Noras, James M., Zhu, Shaozhen (Sharon), Ghazaany, Tahereh S., Ali, N.T., Elkhazmi, Elmahdi A. January 2013 (has links)
No / A comparison between two indoor localization algorithms using received signal strength is carried out. The first algorithm is the vector algorithm; the second is the matrix algorithm. The comparison considered the effects of the reference points, the access point, and the frequency on the accuracy of the localization process. The experiments were carried out using ray tracing software and MATLAB. This paper justifies the use of adopting the matrix algorithm.
5

Análise de modelos de pedestres para a caracterização da radiopropagação em interiores. / Pedestrian models analysis for characterization of indoor radio propagation.

Queiroz, Andréa Duarte Carvalho de 12 December 2013 (has links)
Neste trabalho, modelos de pedestres, utilizados para simular a caracterização da radiopropagação em interiores de edifícios, são reproduzidos, analisados e comparados em diversos ambientes e com diferentes fluxos de pedestres. Estes modelos têm como base o método de traçado de raios (imagens), e se diferenciam em relação ao formato (lâmina, paralelepípedo e cilindro), constantes eletromagnéticas (material absorvente, condutor e dielétrico) e mecanismos de espalhamento de onda eletromagnética (difração, reflexão ou ambos) considerados sobre o pedestre. Para cada um dos modelos, um algoritmo foi criado e detalhado através da apresentação de equações e estrutura dos dados. A análise dos modelos foi realizada em duas etapas de comparação: uma com dados empíricos e outra entre parâmetros de caracterização do canal, como desvanecimentos e dispersão no tempo, obtidos através de simulações com cada tipo de modelo de pedestre. Dentre os vinte e nove modelos ensaiados, os resultados da análise mostraram que o pedestre modelado por um cilindro condutor é aquele que apresenta resultados mais satisfatórios. / In this work, pedestrian models, used to simulate characterization of indoor radio propagation are reproduced, analyzed and compared in different environments with different pedestrian flows. These models are based on the image ray-tracing method, and differs themselves on shape (plate, cylinder and cuboid), electromagnetic constant (absorber, conductive and dielectric materials) and considered spread mechanisms (diffraction, reflection, or both). For each model, an algorithm is created and detailed through the presentation of equations and data structure. The models analysis were made in two comparison steps: one with empirical data and the other with the environment characterization parameters, like fading and time spread, obtained through simulations of each pedestrian model. Within twenty nine models simulation, the results analysis show that the most satisfactory results are given by the model that considers the pedestrian as a conducting cylinder.
6

Application of Channel Modeling for Indoor Localization Using TOA and RSS

Hatami, Ahmad 31 May 2006 (has links)
"Recently considerable attention has been paid to indoor geolocation using wireless local area networks (WLAN) and wireless personal area networks (WPAN) devices. As more applications using these technologies are emerging in the market, the need for accurate and reliable localization increases. In response to this need, a number of technologies and associated algorithms have been introduced in the literature. These algorithms resolve the location either by using estimated distances between a mobile station (MS) and at least three reference points (via triangulation) or pattern recognition through radio frequency (RF) fingerprinting. Since RF fingerprinting, which requires on site measurements is a time consuming process, it is ideal to replace this procedure with the results obtained from radio channel modeling techniques. Localization algorithms either use the received signal strength (RSS) or time of arrival (TOA) of the received signal as their localization metric. TOA based systems are sensitive to the available bandwidth, and also to the occurrence of undetected direct path (UDP) channel conditions, while RSS based systems are less sensitive to the bandwidth and more resilient to UDP conditions. Therefore, the comparative performance evaluation of different positioning systems is a multifaceted and challenging problem. This dissertation demonstrates the viability of radio channel modeling techniques to eliminate the costly fingerprinting process in pattern recognition algorithms by introducing novel ray tracing (RT) assisted RSS and TOA based algorithms. Two sets of empirical data obtained by radio channel measurements are used to create a baseline for comparative performance evaluation of localization algorithms. The first database is obtained by WiFi RSS measurements in the first floor of the Atwater Kent laboratory; an academic building on the campus of WPI; and the other by ultra wideband (UWB) channel measurements in the third floor of the same building. Using the results of measurement campaign, we specifically analyze the comparative behavior of TOA- and RSS-based indoor localization algorithms employing triangulation or pattern recognition with different bandwidths adopted in WLAN and WPAN systems. Finally, we introduce a new RT assisted hybrid RSS-TOA based algorithm which employs neural networks. The resulting algorithm demonstrates a superior performance compared to the conventional RSS and TOA based algorithms in wideband systems."
7

Performance of TOA Estimation Algorithms in Different Indoor Multipath Conditions

Alsindi, Nayef Ali 30 April 2004 (has links)
Using Time of Arrival (TOA) as ranging metric is the most popular technique for accurate indoor positioning. Accuracy of measuring the distance using TOA is sensitive to the bandwidth of the system and the multipath condition between the wireless terminal and the access point. In a telecommunication-specific application, the channel is divided into Line of Sight (LOS) and Obstructed Line of Sight (OLOS) based on the existence of physical obstruction between the transmitter and receiver. In indoor geolocation application, with extensive multipath conditions, the emphasis is placed on the behavior of the first path and the channel conditions are classified as Dominant Direct Path (DDP), Nondominant Direct Path (NDDP) and Undetected Direct Path (UDP). In general, as the bandwidth increases the distance measurement error decreases. However, for the so called UDP conditions the system exhibits substantially high distance measurement errors that can not be eliminated with the increase in the bandwidth of the system. Based on existing measurements performed in CWINS, WPI a measurement database that contains adequate number of measurement samples of all the different classification is created. Comparative analysis of TOA estimation in different multipath conditions is carried out using the measurement database. The performance of super-resolution and traditional TOA estimation algorithms are then compared in LOS, OLOS DDP, NDDP and UDP conditions. Finally, the analysis of the effect of system bandwidth on the behavior of the TOA of the first path is presented.
8

Análise de modelos de pedestres para a caracterização da radiopropagação em interiores. / Pedestrian models analysis for characterization of indoor radio propagation.

Andréa Duarte Carvalho de Queiroz 12 December 2013 (has links)
Neste trabalho, modelos de pedestres, utilizados para simular a caracterização da radiopropagação em interiores de edifícios, são reproduzidos, analisados e comparados em diversos ambientes e com diferentes fluxos de pedestres. Estes modelos têm como base o método de traçado de raios (imagens), e se diferenciam em relação ao formato (lâmina, paralelepípedo e cilindro), constantes eletromagnéticas (material absorvente, condutor e dielétrico) e mecanismos de espalhamento de onda eletromagnética (difração, reflexão ou ambos) considerados sobre o pedestre. Para cada um dos modelos, um algoritmo foi criado e detalhado através da apresentação de equações e estrutura dos dados. A análise dos modelos foi realizada em duas etapas de comparação: uma com dados empíricos e outra entre parâmetros de caracterização do canal, como desvanecimentos e dispersão no tempo, obtidos através de simulações com cada tipo de modelo de pedestre. Dentre os vinte e nove modelos ensaiados, os resultados da análise mostraram que o pedestre modelado por um cilindro condutor é aquele que apresenta resultados mais satisfatórios. / In this work, pedestrian models, used to simulate characterization of indoor radio propagation are reproduced, analyzed and compared in different environments with different pedestrian flows. These models are based on the image ray-tracing method, and differs themselves on shape (plate, cylinder and cuboid), electromagnetic constant (absorber, conductive and dielectric materials) and considered spread mechanisms (diffraction, reflection, or both). For each model, an algorithm is created and detailed through the presentation of equations and data structure. The models analysis were made in two comparison steps: one with empirical data and the other with the environment characterization parameters, like fading and time spread, obtained through simulations of each pedestrian model. Within twenty nine models simulation, the results analysis show that the most satisfactory results are given by the model that considers the pedestrian as a conducting cylinder.
9

Antenna Selection and Deployment Strategies for Indoor Wireless Communication Systems

Wong, Alex H. C. January 2007 (has links)
Effective antenna selection and deployment strategies are important for reducing co-channel interference in indoor wireless systems. Low-cost solutions are essential, and strategies that utilise simple antennas (such as directional patches) are advantageous from this perspective. However, performance is always an issue and the improvements achievable through clever antenna deployment need to be quantified. In this thesis, an experimental investigation of indoor propagation comparing the performance of directional antennas and multiple-element arrays (MEAs) with omni-directional antennas is reported. Estimation of the performance of a direct sequence code division multiple access (DS-CDMA) system operating in a variety of deployment scenarios allows the identification of a range of performance-limiting factors and the optimal deployment strategies. It is shown that the orientation of single-element directional antennas can significantly impact on system performance compared to omni-directional antennas in traditional systems. The deployment of MEAs with an active diversity combining scheme can further improve system performance by more than one order of magnitude. From the perspective of system planning, the choice of antenna selection and deployment options depends on the current and future demand for system performance and the financial resources available. An evolutionary path has been proposed to provide a smooth transition from conventional (low-cost) to high-performance (high-cost) antenna systems as demand dictates. Other performance-limiting factors in indoor wireless systems include the physical environment and external interference. It is also shown that electromagnetically-opaque obstacles in the environment can amplify the effectiveness of the antenna deployment by acting as physical zone boundaries that restrict interference. External interference has been shown to cause a significant degradation to the performance of an indoor system when the carrier-to-external-interference ratio (CEIR) is below 30 dB. This performance degradation can be minimised by appropriate antenna deployment, although the optimum antenna orientations depends on the strength of the external interference.
10

Antenna Selection and Deployment Strategies for Indoor Wireless Communication Systems

Wong, Alex H. C. January 2007 (has links)
Effective antenna selection and deployment strategies are important for reducing co-channel interference in indoor wireless systems. Low-cost solutions are essential, and strategies that utilise simple antennas (such as directional patches) are advantageous from this perspective. However, performance is always an issue and the improvements achievable through clever antenna deployment need to be quantified. In this thesis, an experimental investigation of indoor propagation comparing the performance of directional antennas and multiple-element arrays (MEAs) with omni-directional antennas is reported. Estimation of the performance of a direct sequence code division multiple access (DS-CDMA) system operating in a variety of deployment scenarios allows the identification of a range of performance-limiting factors and the optimal deployment strategies. It is shown that the orientation of single-element directional antennas can significantly impact on system performance compared to omni-directional antennas in traditional systems. The deployment of MEAs with an active diversity combining scheme can further improve system performance by more than one order of magnitude. From the perspective of system planning, the choice of antenna selection and deployment options depends on the current and future demand for system performance and the financial resources available. An evolutionary path has been proposed to provide a smooth transition from conventional (low-cost) to high-performance (high-cost) antenna systems as demand dictates. Other performance-limiting factors in indoor wireless systems include the physical environment and external interference. It is also shown that electromagnetically-opaque obstacles in the environment can amplify the effectiveness of the antenna deployment by acting as physical zone boundaries that restrict interference. External interference has been shown to cause a significant degradation to the performance of an indoor system when the carrier-to-external-interference ratio (CEIR) is below 30 dB. This performance degradation can be minimised by appropriate antenna deployment, although the optimum antenna orientations depends on the strength of the external interference.

Page generated in 0.036 seconds