• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 70
  • 13
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 106
  • 106
  • 106
  • 31
  • 24
  • 24
  • 23
  • 23
  • 22
  • 20
  • 18
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Xyloglucan modification using controlled polymer grafting for biocomposite applications

Marais, Andrew January 2010 (has links)
No description available.
42

Synthesis and Characterization of Novel Amphiphilic Diblock Copolymers Poly (2-Ethyl-2-Oxazoline)-b-Poly (Vinylidene Fluoride)

Aljeban, Norah 06 1900 (has links)
Poly (2-ethyl-2-oxazoline)-based amphiphilic diblock copolymer has the potential to form promising membrane materials for water purification due to the thermal stability and good solubility in aqueous solution and also for gas separation because of the presence of polar amide group along the polymer backbone. Moreover, their self-assembly into micelles renders them candidate materials as nanocarriers for drug delivery applications. In this study, a novel well-defined linear PEtOx-based amphiphilic diblock copolymer with a hydrophobic fluoropolymer, i.e., PVDF, have been successfully synthesized by implementing a synthesis methodology that involves the following four steps. In the first step, poly (2-ethyl-2-oxazoline) (PEtOx) was synthesized via living cationic ring-opening polymerization (LCROP) of 2-ethyl-2-oxazoline (EtOx) monomer. The “living” nature of LCROP allows the desirable termination to occur by using the proper termination agent, namely, water, to achieve the polymer with a terminal hydroxyl group, i.e., PEtOx-OH. The hydroxyl end group in PEtOx-OH was converted to PEtOx-Br using 2-bromopropionyl bromide via an esterification reaction. In the third step, the PEtOx-Br macro-CTA was subsequently reacted with potassium ethyl xanthate to insert the necessary RAFT agent via nucleophilic substitution reaction to obtain PEtOx-Xanthate. It s worth mentioning that this step is vital for the sequential addition of the second block via the RAFT polymerization reaction of fluorinated monomer, i.e., VDF, to finally obtain the well-defined amphiphilic diblock copolymer with variable controlled chain lengths. Proton Nuclear Magnetic Resonance Spectroscopy (1H-NMR) and Fourier Transform Infrared Spectroscopy (FT-IR) confirmed the structure of the macroinitiator and final copolymer, respectively. Size Exclusion Chromatography (SEC) determined the number-average molecular weight (Mn) and the polydispersity index (PDI) of the obtained copolymer. Furthermore, the polymorphism of the diblock copolymer characterized by X-Ray Diffraction (XRD) indicated that the copolymer displays the electroactive α-phase. The resultant amphiphilic diblock copolymer exhibits spherical micelles morphology, as confirmed by Dynamic Light Scattering (DLS) and Atomic Force Microscopy (AFM). Moreover, Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) investigated the thermal decomposition behavior of the copolymer and determined the glass transition temperature (Tg ≈ 70 °C), melting temperature (Tm ≈ 160-170 °C), and crystallization temperature (Tc ≈ 135-143 °C) of the diblock copolymer, respectively.
43

Lewis and Brönsted Acid Adducts of Hexachlorocyclotriphosphazene and Carboxylate Derivatives of Disilanes

Heston, Amy Jeannette 26 September 2005 (has links)
No description available.
44

Synthesis and characterization of poly-amido-saccharides with novel structures and properties

Xiao, Ruiqing 16 February 2019 (has links)
Polysaccharides are complex biopolymers that play essential roles in the biological systems including energy storage, structural support, lubrication, and signal transduction. Despite their importance, the synthesis of polysaccharides has proven to be very challenging due to the presence of multiple hydroxyl groups and difficulty in controlling the stereochemical outcome of glycosylation reactions. As a conventional chemical method to synthesize polysaccharides, ring-opening polymerization of anhydrosugars enables the synthesis of stereoregular α-(1→6)-linked polysaccharides, but is less effective in preparing polysaccharides with other linkages. Enzymatic polymerizations have also been explored, however, these methods typically require expensive monomers, and suffer from a narrow scope of enzymes and small scale of reactions. The limited approaches to polysaccharides have inspired chemists to synthesize polysaccharide mimetics with achiral linkages that can be constructed efficiently. Poly-amido-saccharides (PASs) are a new type of saccharide polymers in which the O-glycosidic linkages in natural polysaccharides are replaced with (1→2)-amide linkages. With saccharide moieties inter-connected by amide bonds, PASs exhibit characteristics of both polysaccharides and polypeptides, such as possessing pyranose-backbones and lots of hydroxyl groups, and adopting a left-handed helical conformation. However, due to lack of sufficient terminal saccharide residues, previously synthesized glucose and galactose PASs display weak interactions with carbohydrate binding lectins and receptors, limiting their applications in biomedical and pharmaceutical fields. Herein, the design and synthesis of PASs with novel structures and properties is described. By pre-installing the stereochemistry in the monomer, Altrose PASs (Alt-PASs) with β-(1→2)-amide linkages are prepared via ring-opening polymerization of an altrose-based β-lactam followed by debenzylation. Circular dichroism shows that Alt-PASs adopt a right-handed helical conformation in aqueous solution. Via the polymerization of disaccharide-based β-lactams, two PASs with either 4-O-α-D-glucose branches (Mal-PASs) or 6-O-β-D-glucose branches (Gen-PASs) are obtained. Biological studies reveal that Mal-PASs are multivalent ligands to lectin Concanavalin A, while Gen-PASs activate RAW 264.7 macrophage cells by enhancing the secretion of TNF-α and NO. The anionic ring-opening polymerization of sugar-based β-lactams is a useful method to synthesize well-defined polysaccharide mimetics, and this method expands the current repertory of approaches available to complex saccharide polymers with biological activities. / 2021-02-15T00:00:00Z
45

Chemistry of Magnesium and Zinc Complexes Supported by Bulky Ancillary Ligands and their Applications in the Ring-Opening Polymerization Studies of Cyclic Esters

Wambua, Pasco M. 29 October 2014 (has links)
No description available.
46

SYNTHESIS, CHARACTAERIZATION AND COMPUTER SIMULATIONS OF STEREOREGULAR POLY-(METHYLPHENYLSILOXANE)

AHN, HYEON WOO 11 June 2002 (has links)
No description available.
47

CHEMISTRY OF MAGNESIUM ALKYLS COMPLEXES SUPPORTED BY Aß–DIIMINATO LIGAND

Choojun, Kittisak 17 September 2013 (has links)
No description available.
48

Development of Controlled Ring-Opening Polymerization of  O-Carboxyanhydrides

Zhong, Yongliang 27 October 2020 (has links)
The aim of my Ph.D. thesis is to summarize my research on the development of ring-opening polymerization (ROP) of O-carboxyanhydrides (OCAs) to synthesize functionalized, degradable polyesters. Biodegradable polyesters are promising alternatives to conventional petroleum-based non-degradable polyolefins and they are widely used in everyday applications ranging from clothing and packaging to agriculture and biomedicine. Commercially available polyesters, such as poly(lactic-co-glycolic acid), poly(lactic acid), and polycaprolactone, hydrolyze in physicochemical media. They have been approved by FDA and widely used for medical applications. However, the lack of side-chain functionality in polyesters and in corresponding monomers greatly plagues their utility for applications that demand physicochemical properties such as high stiffness, tensile strength and elasticity. Increasing efforts have been devoted to the introduction of pendant groups along the polymer chain in order to modify and modulate the physicochemical properties of polyesters and thereby to expand their applications. Over the last decade, OCAs have emerged as an alternative class of highly active monomers for polyester polymerization. OCAs are prepared from amino acids and thus have a richer range of side chain functionalities than lactone or lactide. Like lactones, OCAs can undergo ROP to obtain polyesters. Unfortunately, current ROP methods, especially those involving organocatalysts, result in uncontrolled polymerization including epimerization for OCAs bearing electron-withdrawing groups, unpredictable molecular weights (MWs), or slow polymerization kinetics. Based on our recent success of Ni/Ir photoredox catalysis allowing for rapid synthesis of high-MWs polyesters, we further explore new polymerization chemistry to use earth-abundant metal complexes to replace expensive rare-earth metal photocatalysts, and practice the polymerization in moderate and energy-efficient reaction conditions. This thesis introduces novel photoredox and electrochemical earth-abundant metal catalysts that overcome above difficulties in the ROP chemistry of OCAs, and allow for the preparation of stereoregular polyesters bearing abundant side-chain functionalities in a highly controlled manner. Specifically, various highly active metal complexes have been developed for stereoselective ROP of OCAs, either using light or electricity, to synthesize syndiotactic or stereoblock copolymers with different thermal properties. Additionally, simple purification protocols of OCAs have also been initially studied, which potentially paves the way to bulk production of functional monomers. In this thesis, I first describe newly-developed photoredox Co/Zn catalysts to achieve a controlled ROP of enantiopure OCAs under mild reaction conditions (Chapter 2). Such discovery is extended to the combination use of Co catalysts with various Zn/Hf complexes that enable stereoselective controlled ROP of racemic OCAs for the preparation of stereoregular polyesters (Chapter 3). The mechanistic studies of the aforementioned developments lead to the application of such a catalytic system in controlled electrochemical ROP of OCAs (Chapter 4). Such chemistry can also be translated to stereoselectively electrochemical ROP of racemic OCAs to either syndiotactic or stereoblock polyesters, allowing precise control of polyester's tacticity and sequence (Chapter 5). An overview future work has been summarized (Chapter 6). / Doctor of Philosophy / Polyesters are widely used in everyday applications ranging from clothing and packaging to agriculture and biomedicine. Different from conventional unrecyclable plastics, polyesters are usually biocompatible and biodegradable, and can be synthesized from renewable resources. A few commercially available polyesters have been approved by FDA and widely used for medical applications. However, their utility for applications that demand various mechanical and chemical properties is greatly limited by the lack of side-chain functional groups in polyesters and in their monomers—lactones. Increasing efforts have been devoted to the introduction of pendant groups along the polymer chain in order to modify and modulate the desired properties of polyesters and thereby to expand their applications. Over the last decade, O-carboxyanhydrides (OCAs) have emerged as an alternative class of highly active monomers for polyester polymerization. OCAs can be prepared from renewable source amino acids and thus have a richer range of side chain functional groups. Like lactones, OCAs can undergo ring-opening polymerization (ROP). Unfortunately, current ROP methods usually result in uncontrolled polymerization of OCAs including loss of stereoregularity, unpredictable molecular weights, or slow polymerization rate. To address the above-described polymer chemistry and materials challenges, I have been motivated to develop a new polymer chemistry knowledge base when starting my Ph.D. program. I was first involved in the development of a controlled photoredox polymerization of OCAs produces polyesters with various side chain functional groups. By using photoredox Ni/Zn/Ir catalysts, stereoregular high molecular weight polyesters can be synthesized from racemic OCAs in a rapid, controlled manner. However, this catalytic system has to be used at -20 °C despite so successful in preparing stereoblock polyesters. Encouraged by our recent success in this area, I started to work on the discovery of other transition metal complexes such as the Co complexes used in N-carboxyanhydride polymerization. Ultimately, innovative photoredox Co/Zn catalysts has been successfully developed, and applied to our protocol to achieve the controlled ROP of enantiopure OCAs under mild reaction condition (Chapter 2). The Co catalyst can replace both Ni and Ir in aforementioned photoredox system. Meanwhile, the combination of Co catalysts and various Zn/Hf complexes has also been developed to undergo photoredox ROP of racemic OCAs to efficiently produce polyesters with different microstructures (Chapter 3). Although photoredox ROP is an efficient method for synthesizing degradable polyesters, great decrease in photonic flux with the depth of the reaction medium makes it less energy efficient compared to electricity. Therefore, we then extended our protocol to electrochemical reaction, which is one of the most energy-efficient chemical reactions. The newly identified Co/Zn catalytic system can be activated by electric current to mediate rapid electrochemical ROP (eROP) of enantiopure OCAs, allowing for the synthesis of isotactic polyesters in a highly controlled manner (Chapter 4). Additionally, stereoselective eROP of racemic OCAs has been firstly achieved by using various combinations of Co and Zn/Hf complexes (Chapter 5). In summary, my research produces unique and transformative insights into the innovative photoredox and electrochemical ROP mediated by metal catalysts. Given the importance and versatility of biodegradable and biocompatible polyester materials, the chemistry invented by our team can be expected to serve as a new platform for various applications in material and biomedical engineering.
49

Structure-property-processing relationships between polymeric solutions and additive manufacturing for biomedical applications

Wilts, Emily Marie 01 October 2020 (has links)
Additive manufacturing (AM) creates 3D objects out of polymers, ceramics, and metals to enable cost-efficient and rapid production of products from aerospace to biomedical applications. Personalized products manufactured using AM, such as personalized dosage pharmaceuticals, tissue scaffolds, and medical devices, require specific material properties such as biocompatibility and biodegradability, etc. Polymers possess many of these qualities and tuning molecular structure enables a functional material to successfully deliver the intended application. For example, water-soluble polymers such as poly(vinyl pyrrolidone) and poly(ethylene glycol) both function as drug delivery materials because of their inherit water-solubility and biocompatibility. Other polymers such as polylactide and polyglycolide possess hydrolytically cleavable functionalities, which enables degradation in the body. Non-covalent bonds, such as hydrogen bonding and electrostatic interactions, enable strong connections capable of holding materials together, but disconnect with heat or solvation. Taking into consideration some of these polymer functionalities, this dissertation investigates how to utilize them to create functional biomedical products using AM. The investigation of structure-property-processing relationships of polymer molecular structures, physical properties, and processing behaviors is transforming the field of new materials for AM. Even though novel, functional materials for AM continue to be developed, requirements that render a polymeric material printable remain unknown or vague for most AM processes. Materials and printers are usually developed separately, which creates a disconnect between the material printing requirements and fundamental physical properties that enable successful printing. Through the interface of chemistry, biology, chemical engineering, and mechanical engineering, this dissertation aims to relate printability of polymeric materials with three types of AM processes, namely vat photopolymerization, binder jetting, and powder bed fusion. Binder jetting, vat photopolymerization, and powder bed fusion require different viscosity and powder requirements depending on the printer capabilities, and if the material is neat or in solution. Developing scaling relationships between solution viscosity and concentration determined critical overlap (C*) and entanglement (Ce) concentrations, which are related to the printability of the materials. For example, this dissertation discusses and investigates the maximum printable concentration in binder jetting of multiple polymer architectures in solution as a function of C* values of the polymer. For thermal-type printheads, C* appeared to be the highest jettable concentration, which asserted an additional method of material screening for binder jetting. Another investigation of the photokinetics as a function of concentration of photo-active polymers in solution revealed increased viscosity leads to decreased acrylate/acrylamide conversion. Lastly, investigating particle size and shape of poly(stearyl acrylate) particles synthesized through suspension polymerization revealed a combination of crosslinked and linear polymers produced high resolution parts for phase change materials. These analytical screening methods will help the progression of AM and provide future scientists and engineers a better guideline for material screenings. / Doctor of Philosophy / Additive manufacturing (AM), also known as 3D printing, enables the creation of 3D objects in a rapid and cost-efficient manner for applications from aerospace to biomedical sectors. AM particularly benefits the field of personalized biomedical products, such as personalized dosage pharmaceuticals, hearing aids, and prosthetic limbs. In the future, advanced detection and prevention medical screenings will provide doctors, pharmacists, and engineers very precise data to enable personalized healthcare. For example, a patient can take three different medications in one pill with the exact dosage to prevent side-effects and drug-drug interactions. AM enables the delivery and manufacturing of these personalized systems and will improve healthcare in every sector. Investigations of the most effective materials is needed for personalized medicine to become a reality. Polymers, or macromolecules, provide a highly tunable material to become printable with slight chemical modifications. Investigation of how chemical structure affects properties, such as strength, stretchability, or viscosity, will dictate how they perform in a manufacturing setting. This process of investigation is called "structure-property-processing" relationships, which connects scientists and engineers through all disciplines. This method is used to discover which polymers will not only 3D print, but also carry medication to a patient or deliver therapeutics within the body.
50

Part I: Synthesis and Ring Opening Polymerization of Macrocyclic Monomers for Production of Engineering Thermoplastics

Xie, Donghang 14 January 1997 (has links)
Part I: Single sized, pure arylene ether macrocycles ranging from 30 to 60 atom ring sizes were synthesized in good yields (up to 83%) by the two component method under high dilution conditions. These macrocycles have unsymmetric structures containing sulfone/ketone or sulfone/phosphine oxide functional groups and have relatively low melting points. The melt ROP of the single sized macrocycles to form poly(arylene ether)s exhibits two stage characteristics: the first stage is very fast, driven by the large entropy difference between cyclics and linears; the second stage is very slow and is diffusion controlled due to the high viscosity created in the first stage reaction. The latter stage leads to incomplete polymerization at the low initiator concentrations (1-3 mol%). At high initiator concentrations (5-7 mol%), 100% conversion is reached due to improved initiator distribution in macrocycles; however, this reduces molecular weights of the polymers. The molecular weight is found to build up very rapidly, independent of conversion, reaction time and type of initiator. The ROP is initiated by CsF and alkali phenoxides. The efficiency of the alkali counterion is generally in the order of Cs+>K+>Na+, while a phenoxide initiator is more efficient than a fluoride initiator. It is also found that the Cs counterion leads to highest degree of crosslinking. The ROP of cyclic oligomeric mixtures is also reported for comparison; the study shows that the molecular weight depends on time and conversion, and that the conversion is sensitive to the content of linear impurities and the average ring size of cyclic mixtures. Part II: Polyrotaxanes are novel polymeric materials comprised of linear polymer molecules and threaded macrocycles with no covalent bond between the two components. With potential movements of the cyclic component and judicious combinations of the two components of different properties, these materials have brought interesting changes of physical properties, such as morphology, crystallinity, solubility, viscosity, etc. In this part of the dissertation, a new family of polyrotaxanes with poly(arylene ether)s as backbones and crown ethers as cyclic components are described. These include linear poly(arylene ether) based polyrotaxanes and hyperbranched poly(ether ether ketone) based polyrotaxanes; both are synthesized via aromatic nucleophilic substitution reactions. Preliminary studies show that these polymers exhibit great enhancement of solubility. The polymers form emulsions in water and methanol which are normally non-solvents for the poly(arylene ether) backbones. In some cases, they are even soluble in water to form a clear solution. The attempted syntheses of polyrotaxanes using aromatic macrocycles described in Part I was not successful, with no indication of threading. / Ph. D.

Page generated in 0.1357 seconds