1 |
Effect of tree girdling, harvest time and ripening temperature on "hass" avocado fruit skin colour development during ripeningSibuyi, Hazel January 2018 (has links)
Thesis (M. Sc. (Horticulture)) -- University of Limpopo, 2018 / ‘Hass’ avocado fruit changes skin colour from green to purple and then black during ripening. However, markets importing South African avocado fruit have been complaining about the ‘Hass’ skin colour not changing to purple/black during ripening. Thus, the study aimed to investigate the effect of tree girdling, harvest time and ripening temperature on ‘Hass’ avocado fruit skin colour development during ripening. The mature ‘Hass’ avocado fruit were harvested from girdled and non-girdled trees during early (April), mid- (May) and late (June) harvest times. Upon arrival, in the laboratory fruit were cold stored at 5.5°C for 28 days. After storage, fruit were ripened at 25, 21 and 16°C for 8, 6 and 4 days, respectively. After withdrawal from clod storage fruit were evaluated for skin colour development, ripening and physiological disorders (chilling injury). Fruit from girdled trees showed high maturity (low moisture content) when compared with fruit from non-girdled trees during early and mid-harvest. With respect to skin colour development, the results indicate that skin eye colour development of fruit from girdled and non-girdled trees minimally increased from emerald green (1) to olive green (3) across all harvest times, ripening temperature and ripening duration. However, late season fruit from non-girdled trees improved to purple (4) when ripened at 21°C when compared with fruit from girdled trees. In terms of objective colour, lightness, hue angle and chroma decreased for fruit from girdled and non-girdled trees, across all harvest times, ripening temperature and ripening duration. Lightness and hue angle of fruit from girdled trees were slightly reduced when compared with fruit from non-girdled trees, throughout all harvest times, ripening temperature and duration. Early and mid-season fruit harvested from girdled trees showed rapid decrease of chroma when compared with fruit from non-girdled trees, throughout ripening temperature and
x
duration. In terms of softening, fruit from girdled trees showed higher firmness loss and ripening percentage within 6 (16°C) and 4 (21 and 25°C) days when compared with fruit from non-girdled trees during early and mid-harvest, whereas, late harvest fruit from girdled trees reached higher ripening percentage and firmness loss within 4 days throughout ripening temperatures. With respect to cold damage, late harvested fruit from girdled trees showed higher external chilling injury when compared with non-girdled trees, throughout ripening temperature. In general, girdling treatment improved fruit maturity, ripening rate and firmness loss. However, the incidence of variable skin colouring of ‘Hass’ avocado fruit during ripening was also prevalent in early harvested fruit from girdled tree, irrespective of ripening temperature.
Keywords: girdling, harvest time, physiological disorder, ripening temperature, variable colouring
|
2 |
Effect of tree girdling, harvest time and ripening temperature on "hass" avocado fruit skin colour development during ripeningSibuyi, Hazel January 2018 (has links)
Thesis (M.Sc. (Horticulture)) --University of Limpopo, 2018 / ‘Hass’ avocado fruit changes skin colour from green to purple and then black during ripening. However, markets importing South African avocado fruit have been complaining about the ‘Hass’ skin colour not changing to purple/black during ripening. Thus, the study aimed to investigate the effect of tree girdling, harvest time and ripening temperature on ‘Hass’ avocado fruit skin colour development during ripening. The mature ‘Hass’ avocado fruit were harvested from girdled and non-girdled trees during early (April), mid- (May) and late (June) harvest times. Upon arrival, in the laboratory fruit were cold stored at 5.5°C for 28 days. After storage, fruit were ripened at 25, 21 and 16°C for 8, 6 and 4 days, respectively. After withdrawal from clod storage fruit were evaluated for skin colour development, ripening and physiological disorders (chilling injury). Fruit from girdled trees showed high maturity (low moisture content) when compared with fruit from non-girdled trees during early and mid-harvest. With respect to skin colour development, the results indicate that skin eye colour development of fruit from girdled and non-girdled trees minimally increased from emerald green (1) to olive green (3) across all harvest times, ripening temperature and ripening duration. However, late season fruit from non-girdled trees improved to purple (4) when ripened at 21°C when compared with fruit from girdled trees. In terms of objective colour, lightness, hue angle and chroma decreased for fruit from girdled and non-girdled trees, across all harvest times, ripening temperature and ripening duration. Lightness and hue angle of fruit from girdled trees were slightly reduced when compared with fruit from non-girdled trees, throughout all harvest times, ripening temperature and duration. Early and mid-season fruit harvested from girdled trees showed rapid decrease of chroma when compared with fruit from non-girdled trees, throughout ripening temperature and
x
duration. In terms of softening, fruit from girdled trees showed higher firmness loss and ripening percentage within 6 (16°C) and 4 (21 and 25°C) days when compared with fruit from non-girdled trees during early and mid-harvest, whereas, late harvest fruit from girdled trees reached higher ripening percentage and firmness loss within 4 days throughout ripening temperatures. With respect to cold damage, late harvested fruit from girdled trees showed higher external chilling injury when compared with non-girdled trees, throughout ripening temperature. In general, girdling treatment improved fruit maturity, ripening rate and firmness loss. However, the incidence of variable skin colouring of ‘Hass’ avocado fruit during ripening was also prevalent in early harvested fruit from girdled tree, irrespective of ripening temperature.
Keywords: girdling, harvest time, physiological disorder, ripening temperature, variable colouring
|
3 |
Delayed fruit harvest on yield, nutritional value and post-harvest quality of late maturing reed avocado (Persea Americana Mill)Novela, Precious January 2016 (has links)
Thesis (MSc .(Plant Production)) -- University of Limpopo, 2016 / Delayed fruit harvest (DFH) or on-tree-fruit storage is a strategy being considered to extend the harvest season of late maturing ‘Reed’ avocado. However, avocado fruit growth beyond physiological maturity is accompanied by alterations in chemical and physical properties. Thus, the study aimed to investigate the effects of delayed harvest on tree productivity, mineral nutrition and post-harvest quality of late maturing ‘Reed’ avocado and further to evaluate the fruit quality response to varying ripening temperature regimes. As treatments, fruit were harvested early, mid and late in the season, with one month apart from each harvest during 2013 and 2014 seasons. Yield and fruit size were recorded at harvest. During each harvest time, two sets of fruit samples were collected to determine the fruit nutritional content while the second set was cold stored at 5.5°C for 28 days. After storage, fruit were ripened at 16, 21 or 25°C and evaluated for post-harvest disorders, pathological diseases and fruit physico-chemical properties. Yield dropped from 42 to 12 kg/tree from early to late harvest during 2013, while treatments showed no effect during 2014. Furthermore, treatments had no effect on fruit size during both seasons. Phosphorus content decreased by 40 and 23% from early to late harvest time during 2013 and 2014 seasons, respectively. Similar decreasing patterns were observed for K, Ca and Mg content. Zinc content remained constant during 2013; however, mid-season fruit maintained higher zinc levels during 2014 season when compared to early and late harvest time. Protein content was constant for early and mid-season fruit but significantly decreased during the late harvest in both seasons. Moisture content decreased from 74.0 to 65.0% from early to late harvest during both seasons. Starch, oil and ash content were high during late harvest time in both seasons; while crude fibre was high during the mid-harvest time when compared with early and late harvest time. Internal chilling injury increased with maturity and ripening temperature. In both seasons, higher temperatures induced higher anthracnose incidences during early and mid-harvest compared with late harvest time. Similarly, vascular browning was high on fruit ripened at 16°C during early and mid-harvest time but decreased on late harvest fruit during 2013. However, low ripening temperatures induced high incidences of vascular browning during 2014 season. Stem-end rot was high on fruit ripened at 16°C than 21 and 25°C during 2014 season.
xvi
Physico-chemical quality parameters showed similar behaviour in both seasons. Fruit lightness increased with ripening time regardless of ripening temperature during the early harvest, but remained constant during mid and late harvest. Hue angle (h0) and Chroma (C*) values were slightly reduced during ripening. Fruit ripened at 25°C had the highest respiration rate and reached a climacteric peak earlier (day 2) than fruit ripened at 21 and 16°C (day 4). Fruit firmness and weight loss were high and rapid at 25°C followed by 21 and 16°C regardless of the harvest time. Delayed harvest had no effect on yield and fruit size. Generally, nutritional content of avocado fruit increased with fruit maturity. Furthermore, fruit maturity played a major role in the response of fruit to ripening temperature. Higher temperature enhanced fruit ripening, but was conducive for development of post-harvest diseases.
Keywords: Harvesting time, nutrition, yield, fruit size, ripening temperature, post-harvest quality
|
Page generated in 0.0816 seconds