1 |
Global Optimization of Nonconvex Factorable Programs with Applications to Engineering Design ProblemsWang, Hongjie 12 June 1998 (has links)
The primary objective of this thesis is to develop and implement a global optimization algorithm to solve a class of nonconvex programming problems, and to test it using a collection of engineering design problem applications.The class of problems we consider involves the optimization of a general nonconvex factorable objective function over a feasible region that is restricted by a set of constraints, each of which is defined in terms of nonconvex factorable functions. Such problems find widespread applications in production planning, location and allocation, chemical process design and control, VLSI chip design, and numerous engineering design problems. This thesis offers a first comprehensive methodological development and implementation for determining a global optimal solution to such factorable programming problems. To solve this class of problems, we propose a branch-and-bound approach based on linear programming (LP) relaxations generated through various approximation schemes that utilize, for example, the Mean-Value Theorem and Chebyshev interpolation polynomials, coordinated with a {em Reformulation-Linearization Technique} (RLT). The initial stage of the lower bounding step generates a tight, nonconvex polynomial programming relaxation for the given problem. Subsequently, an LP relaxation is constructed for the resulting polynomial program via a suitable RLT procedure. The underlying motivation for these two steps is to generate a tight outer approximation of the convex envelope of the objective function over the convex hull of the feasible region. The bounding step is thenintegrated into a general branch-and-bound framework. The construction of the bounding polynomials and the node partitioning schemes are specially designed so that the gaps resulting from these two levels of approximations approach zero in the limit, thereby ensuring convergence to a global optimum. Various implementation issues regarding the formulation of such tight bounding problems using both polynomial approximations and RLT constructs are discussed. Different practical strategies and guidelines relating to the design of the algorithm are presented within a general theoretical framework so that users can customize a suitable approach that takes advantage of any inherent special structures that their problems might possess. The algorithm is implemented in C++, an object-oriented programming language. The class modules developed for the software perform various functions that are useful not only for the proposed algorithm, but that can be readily extended and incorporated into other RLT based applications as well. Computational results are reported on a set of fifteen engineering process control and design test problems from various sources in the literature. It is shown that, for all the test problems, a very competitive computational performance is obtained. In most cases, the LP solution obtained for the initial node itself provides a very tight lower bound. Furthermore, for nine of these fifteen problems, the application of a local search heuristic based on initializing the nonlinear programming solver MINOS at the node zero LP solution produced the actual global optimum. Moreover, in finding a global optimum, our algorithm discovered better solutions than the ones previously reported in the literature for two of these test instances. / Master of Science
|
2 |
New relaxations for composite functionsTaotao He (7047464) 13 August 2019 (has links)
Mixed-integer nonlinear programs are typically solved using branch-and-bound
algorithms. A key determinant of the success of such methods is their ability to construct tight and tractable relaxations. The predominant relaxation strategy used by
most state-of-the-art solvers is the factorable programming technique. This technique
recursively traverses the expression tree for each nonlinear function and relaxes each
operator over a bounding box that covers the ranges for all the operands. While
it is versatile, and allows finer control over the number of introduced variables, the
factorable programming technique often leads to weak relaxations because it ignores
operand structure while constructing the relaxation for the operator.<div>In this thesis, we introduce new relaxations, called composite relaxations, for
composite functions by convexifying the outer-function over a polytope, which models an ordering structure of outer-approximators of inner functions. We devise a fast
combinatorial algorithm to separate the hypograph of concave-extendable supermodular outer-functions over the polytope, although the separation problem is NP-Hard
in general. As a consequence, we obtain large classes of inequalities that tighten
prevalent factorable programming relaxations. The limiting composite relaxation obtained with infinitely many outer-approximators for each inner-function is shown to
be related to the solution of an optimal transport problem. Moreover, composite relaxations can be seamlessly embedded into a discretization scheme to relax nonlinear
programs with mixed-integer linear programs. Combined with linearization, composite relaxations provide a framework for deriving cutting planes used in relaxation
hierarchies and more.<br></div>
|
3 |
Réseau flexible de résonateurs à ligne de transmissions pour l'émission et la réception en IRM cardiaque à 7T / A flexible transceiver array employing transmission line resonators for cardiac MRI at 7 THossein Nezhadian, Sajad 19 December 2017 (has links)
Ce projet doctoral s’est déroulé dans le cadre d’une collaboration entre le laboratoire d’Imagerie par Résonance Magnétique Médicale et Multi-Modalités (IR4M) de l’Université Paris-Sud (France) et le Center for Medical Physics and Biomedical Engineering at Medical (CMPBME) de l’Université Médicale de Vienne (Autriche). L’objectif principal de ce travail était de développer un réseau d’antennes radiofréquence flexible fonctionnant en émission/réception pour l’IRM à 7T. Les réseaux d’antennes permettent de bénéficier du rapport signal sur bruit élevé des antennes de surface de petites tailles tout en accédant à un champ de vue étendu. De plus, les réseaux d’antennes permettent l’utilisation de technique d’imagerie parallèle afin d’accélérer l’acquisition des images ainsi que l’utilisation d’algorithme de transmission parallèle afin de produire un champ radiofréquence homogène, ce qui est crucial en IRM. Ce projet doctoral visait la conception, le développement, l’installation et l’évaluation d’un réseau d’antenne RF flexible basé sur le principe des résonateurs à lignes de transmission (RLT). Ces structures sont intrinsèquement monolithiques et auto-résonantes et ne nécessitent donc pas l’emploi de condensateurs discrets pour accorder l’antenne. Des simulations électromagnétiques 3D, ainsi que des caractérisations expérimentales sur table et en IRM ont été réalisées pour évaluer les performances de ce réseau, en configuration plate et courbée. / This PhD thesis was conducted in the frame of a bilateral project between the laboratoire d’Imagerie par Résonance Magnétique Médicale et Multi-Modalités (IR4M) at Université Paris-Sud (Orsay, France) and the Center for Medical Physics and Biomedical Engineering (CMPBME) at the Medical University of Vienna (Vienna, Austria). The main objective of this work was to develop a flexible transceiver RF coil array for 7 T MRI. Coil arrays benefit from the high SNR of small surface coils over an extended field of view (FOV). Furthermore, array coils enable the use of parallel imaging (PI) techniques for accelerated image acquisition and pTx algorithms that can be used to produce a homogeneous transmit field which is of importance in MRI. This project targets the design, development, implementation and evaluation of a flexible RF coil array based on the transmission line resonator (TLR) principle. TLRs are inherently monolithic and self-resonant structures, i.e. there is no need for lumped element capacitors to tune the coil. 3D electromagnetic simulation (EMS) together with bench and MRI experiments were performed to evaluate the performance of the developed array in flat and bent configuration.
|
4 |
Advances in MINLP for Optimal Distillation Column SequencingRadhakrishna Tumbalam Gooty (9759830) 14 December 2020 (has links)
<div>Designing configurations for multicomponent distillation, a ubiquitous process in chemical and petrochemical industries, is often challenging. This is because, as the number of components increases, the number of admissible distillation configurations grows rapidly and these configurations vary substantially in their energy needs. Consequently, if a method could identify a few energy-efficient choices from this large set of alternatives, it would be extremely attractive to process designers. Towards this, we develop the first mixed-integer nonlinear programming (MINLP) based solution approach that successfully identifies the most energy-efficient distillation configuration for a given separation. Current sequence design strategies are largely heuristic. The rigorous approach presented here can help reduce the significant energy consumption and consequent greenhouse gas emissions by separation processes. </div><div> </div><div>In addition to the combinatorial complexity, the challenge in solving this problem arises from the nonconvex fractional terms contained in the governing equations. We make several advances to enable solution of these problems.</div><div><br></div><div>(1). We propose a novel search space formulation by embedding convex hulls of various important substructures. We prove that the resulting formulation dominates all the prior formulations in the literature.</div><div><br></div><div>(2). We derive valid cuts to the problem by exploiting the monotonic nature of the governing equations. </div><div><br></div><div>(3). We adapt the classical Reformulation-Linearization Technique (RLT) for fractional terms. Our RLT variant exploits the underlying mathematical structure of the governing equation, and yields a provably tighter convex relaxation.</div><div><br></div><div>(4). We construct the simultaneous hull of multiple nonlinear terms that are constrained over a polytope obtained by intersecting a hypercube with mass balance constraints. This yields a tighter convex relaxation than the conventional approach where the nonlinear terms are convexified individually over a box.</div><div><br></div><div>(5). A key challenge in constructing a valid convex relaxation has been that the denominator of certain fractions in the governing equation can approach arbitrarily close to zero. Using our RLT variant, we construct the first valid relaxation. </div><div><br></div><div>(6). We leverage powerful mixed-integer programming (MIP) solvers by implementing a discretization-based solution procedure with an adaptive partitioning scheme.</div><div><br></div><div>With extensive computational experiments, we demonstrate that the proposed approach outperforms the state-of-the-art in the literature. The formulation can be tailored to other objectives by appending the relevant constraints. Here, we present an extension that identifies the distillation configuration that has the highest thermodynamic efficiency. Finally, we illustrate the practicality of the developed approaches with case studies on crude fractionation and natural gas liquid recovery. </div>
|
5 |
Solving Factorable Programs with Applications to Cluster Analysis, Risk Management, and Control Systems DesignDesai, Jitamitra 20 July 2005 (has links)
Ever since the advent of the simplex algorithm, linear programming (LP) has been extensively used with great success in many diverse fields. The field of discrete optimization came to the forefront as a result of the impressive developments in the area of linear programming. Although discrete optimization problems can be viewed as belonging to the class of nonconvex programs, it has only been in recent times that optimization research has confronted the more formidable class of continuous nonconvex optimization problems, where the objective function and constraints are often highly nonlinear and nonconvex functions, defined in terms of continuous (and bounded) decision variables. Typical classes of such problems involve polynomial, or more general factorable functions.
This dissertation focuses on employing the Reformulation-Linearization Technique (RLT) to enhance model formulations and to design effective solution techniques for solving several practical instances of continuous nonconvex optimization problems, namely, the hard and fuzzy clustering problems, risk management problems, and problems arising in control systems.
Under the umbrella of the broad RLT framework, the contributions of this dissertation focus on developing models and algorithms along with related theoretical and computational results pertaining to three specific application domains. In the basic construct, through appropriate surrogation schemes and variable substitution strategies, we derive strong polyhedral approximations for the polynomial functional terms in the problem, and then rely on the demonstrated (robust) ability of the RLT for determining global optimal solutions for polynomial programming problems. The convergence of the proposed branch-and-bound algorithm follows from the tailored branching strategy coupled with consistency and exhaustive properties of the enumeration tree. First, we prescribe an RLT-based framework geared towards solving the hard and fuzzy clustering problems. In the second endeavor, we examine two risk management problems, providing novel models and algorithms. Finally, in the third part, we provide a detailed discussion on studying stability margins for control systems using polynomial programming models along with specialized solution techniques. / Ph. D.
|
6 |
Semidefinite Cuts and Partial Convexification Techniques with Applications to Continuous Nonconvex Optimization, Stochastic Integer Programming, and Facility Layout ProblemsFraticelli, Barbara M. P. 26 April 2001 (has links)
This dissertation develops efficient solution techniques for general and problem-specific applications within nonconvex optimization, exploiting the constructs of the Reformulation-Linearization Technique (RLT). We begin by developing a technique to enhance general problems in nonconvex optimization through the use of a new class of RLT cuts, called semidefinite cuts. While these cuts are valid for any general problem for which RLT is applicable, we demonstrate their effectiveness in optimizing a nonconvex quadratic objective function over a simplex. Computational results indicate that on average, the semidefinite cuts have reduced the number of nodes in the branch-and-bound tree by a factor of 37.6, while decreasing solution time by a factor of 3.4. The semidefinite cuts have also led to a significant reduction in the optimality gap at termination, in some cases producing optimal solutions for problems that could not be solved using RLT alone.
We then narrow our focus to the class of mixed-integer programming (MIP) problems, and develop a modification of Benders' decomposition method using concepts from RLT and lift-and-project cuts. This method is particularly motivated by the class of two-stage stochastic programs with integer recourse. The key idea is to design an RLT or lift-and-project cutting plane scheme for solving the subproblems where the cuts generated have right-hand sides that are functions of the first-stage variables. An illustrative example is provided to elucidate the proposed approach. The focus is on developing a first comprehensive finitely convergent extension of Benders' methodology for problems having 0-1 mixed-integer subproblems.
We next address a specific challenging MIP application known as the facility layout problem, and we significantly improve its formulation through outer-linearization techniques and concepts from disjunctive programming. The enhancements produce a substantial increase in the accuracy of the layout produced, while at the same time, providing a dramatic reduction in computational effort. Overall, the maximum error in department size was reduced from about 6% to nearly zero, while solution time decreased by a factor of 110. Previously unsolved test problems from the literature that had defied even approximate solution methods have been solved to exact optimality using our proposed approach. / Ph. D.
|
7 |
Discrete Two-Stage Stochastic Mixed-Integer Programs with Applications to Airline Fleet Assignment and Workforce Planning ProblemsZhu, Xiaomei 02 May 2006 (has links)
Stochastic programming is an optimization technique that incorporates random variables as parameters. Because it better reflects the uncertain real world than its traditional deterministic counterpart, stochastic programming has drawn increasingly more attention among decision-makers, and its applications span many fields including financial engineering, health care, communication systems, and supply chain management. On the flip side, stochastic programs are usually very difficult to solve, which is further compounded by the fact that in many of the aforementioned applications, we also have discrete decisions, thereby rendering these problems even more challenging.
In this dissertation, we study the class of two-stage stochastic mixed-integer programs (SMIP), which, as its name suggests, lies at the confluence of two formidable classes of problems. We design a novel algorithm for this class of problems, and also explore specialized approaches for two related real-world applications.
Although a number of algorithms have been developed to solve two-stage SMIPs, most of them deal with problems containing purely integer or continuous variables in either or both of the two stages, and frequently require the technology and/or recourse matrices to be deterministic. As a ground-breaking effort, in this work, we address the challenging class of two-stage SMIPs that involve 0-1 mixed-integer variables in both stages. The only earlier work on solving such problems (Carøe and Schultz (1999)) requires the optimization of several non-smooth Lagrangian dual problems using subgradient methods in the bounding process, which turns out to be computationally very expensive.
We begin with proposing a decomposition-based branch-and-bound (DBAB) algorithm for solving two-stage stochastic programs having 0-1 mixed-integer variables in both stages. Since the second-stage problems contain binary variables, their value functions are in general nonconvex and discontinuous; hence, the classical Benders' decomposition approach (or the L-shaped method) for solving two-stage stochastic programs, which requires convex subproblem value functions, cannot be directly applied. This motivates us to relax the second-stage problems and accompany this relaxation with a convexification process. To make this process computationally efficient, we propose to construct a certain partial convex hull representation of the two-stage solution space, using the relaxed second-stage constraints and the restrictions confining the first-stage variables to lie within some hyperrectangle. This partial convex hull is sequentially generated using a convexification scheme, such as the Reformulation-Linearization Technique (RLT), which yields valid inequalities that are functions of the first-stage variables and, of noteworthy importance, are reusable in the subsequent subproblems by updating the values of the first-stage variables. Meanwhile, since the first stage contains continuous variables, whenever we tentatively fix these variables at some given feasible values, the resulting constraints may not be facial with respect to the associated bounding constraints that are used to construct the partial convex hull. As a result, the constructed Benders' subproblems define lower bounds for the second-stage value functions, and likewise, the resulting Benders' master problem provides a lower bound for the original stochastic program defined over the same hyperrectangle. Another difficulty resulting from continuous first-stage variables is that when the given first-stage solution is not extremal with respect to its bounds, the second-stage solution obtained for a Benders' subproblem defined with respect to a partial convex hull representation in the two-stage space may not satisfy the model's binary restrictions. We thus need to be able to detect whether or not a Benders' subproblem is solved by a given fractional second-stage solution. We design a novel procedure to check this situation in the overall algorithmic scheme. A key property established, which ensures global convergence, is that these lower bounds become exact if the given first-stage solution is a vertex of the defining hyperrectangle, or if the second-stage solution satisfies the binary restrictions.
Based on these algorithmic constructs, we design a branch-and-bound procedure where the branching process performs a hyperrectangular partitioning of the projected space of the first-stage variables, and lower bounds for the nodal problems are computed by applying the proposed modified Benders' decomposition method. We prove that, when using the least-lower-bound node-selection rule, this algorithm converges to a global optimal solution. We also show that the derived RLT cuts are not only reusable in subsequent Benders iterations at the same node, but are also inheritable by the subproblems of the children nodes. Likewise, the Benders' cuts derived for a given sub-hyperrectangle can also be inherited by the lower bounding master programs solved for its children nodes. Using these cut inheritance properties results in significant savings in the overall computational effort.
Some numerical examples and computational results are presented to demonstrate the efficacy of this approach. The sizes of the deterministic equivalent of our test problems range from having 386 continuous variables, 386 binary variables, and 386 constraints, up to 1795 continuous variables, 1539 binary variables, and 1028 constraints. The results reveal an average savings in computational effort by a factor of 9.5 in comparison with using a commercial mixed-integer programming package (CPLEX 8.1) on a deterministic equivalent formulation.
We then explore an important application of SMIP to enhance the traditional airline fleet assignment models (FAM). Given a flight schedule network, the fleet assignment problem solved by airline companies is concerned with assigning aircraft to flight legs in order to maximize profit with respect to captured path- or itinerary-based demand. Because certain related crew scheduling regulations require early information regarding the type of aircraft serving each flight leg, the current practice adopted by airlines is to solve the fleet assignment problem using estimated demand data 10-12 weeks in advance of departure. Given the level of uncertainty, deterministic models at this early stage are inadequate to obtain a good match of aircraft capacity with passenger demands, and revisions to the initial fleet assignment become naturally pertinent when the observed demand differs considerably from the assigned aircraft capacities. From this viewpoint, the initial decision should embrace various market scenarios so that it incorporates a sufficient look-ahead feature and provides sufficient flexibility for the subsequent re-fleeting processes to accommodate the inevitable demand fluctuations.
With this motivation, we propose a two-stage stochastic programming approach in which the first stage is concerned with the initial fleet assignment decisions and, unlike the traditional deterministic methodology, focuses on making only a family-level assignment to each flight leg. The second stage subsequently performs the detailed assignments of fleet types within the allotted family to each leg under each of the multiple potential scenarios that address corresponding path- or itinerary-based demands. In this fashion, the initial decision of what aircraft family should serve each flight leg accomplishes the purpose of facilitating the necessary crew scheduling decisions, while judiciously examining the outcome of future re-fleeting actions based on different possible demand scenarios. Hence, when the actual re-fleeting process is enacted several weeks later, this anticipatory initial family-level assignment will hopefully provide an improved overall fleet type re-allocation that better matches demand. This two-stage stochastic model is complemented with a secondary model that performs adjustments within each family, if necessary, to provide a consistent fleet type-assignment information for accompanying decision processes, such as yield management. We also propose several enhanced fleet assignment models, including a robust optimization model that controls decision variation among scenarios and a stochastic programming model that considers the recapture effect of spilled demand.
In addition to the above modeling concepts and framework, we also contribute in developing effective solution approaches for the proposed model, which is a large-scale two-stage stochastic 0-1 mixed-integer program. Because the most pertinent information needed from the initial fleet assignment is at the family level, and the type-level assignment is subject to change at the re-fleeting stage according to future demand realizations, our solution approach focuses on assigning aircraft families to the different legs in the flight network at the first stage, while finding relaxed second-stage solutions under different demand scenarios. Based on a polyhedral study of a subsystem extracted from the original model, we derive certain higher-dimensional convex hull as well as partial convex hull representations for this subsystem. Accordingly, we propose two variants for the primary model, both of which relax the binary restrictions on the second-stage variables, but where the second variant then also accommodates the partial convex hull representations, yielding a tighter, albeit larger, relaxation. For each variant, we design a suitable solution approach predicated on Benders' decomposition methodology. Using certain realistic large-scale flight network test problems having 900 flight legs and 1,814 paths, as obtained from United Airlines, the proposed stochastic modeling approach was demonstrated to increase daily expected profits by about 3% (which translates to about $160 million per year) in comparison with the traditional deterministic model in present usage, which considers only the expected demand. Only 1.6% of the second-stage binary variables turn out to be fractional in the first variant, and this number is further reduced to 1.2% by using the tighter variant. Furthermore, when attempting to solve the deterministic equivalent formulation for these two variants using a commercial mixed-integer programming package (CPLEX 8.1), both the corresponding runs were terminated after reaching a 25-hour cpu time limit. At termination, the software was still processing the initial LP relaxation at the root node for each of these runs, and no feasible basis was found. Using the proposed algorithms, on the other hand, the solution times were significantly reduced to 5 and 19 hours for the two variants, respectively. Considering that the fleet assignment models are solved around three months in advance of departure, this solution time is well acceptable at this early planning stage, and the improved quality in the solution produced by considering the stochasticity in the system is indeed highly desirable.
Finally, we address another practical workforce planning problem encountered by a global financial firm that seeks to manage multi-category workforce for functional areas located at different service centers, each having office-space and recruitment-capacity constraints. The workforce demand fluctuates over time due to market uncertainty and dynamic project requirements. To hedge against the demand fluctuations and the inherent uncertainty, we propose a two-stage stochastic programming model where the first stage makes personnel recruiting and allocation decisions, while the second stage, based on the given personnel decision and realized workforce demand, decides on the project implementation assignment. The second stage of the proposed model contains binary variables that are used to compute and also limit the number of changes to the original plan. Since these variables are concerned with only one quality aspect of the resulting workforce plan and do not affect feasibility issues, we replace these binary variables with certain conservative policies regarding workforce assignment change restrictions in order to obtain more manageable subproblems that contain purely continuous variables. Numerical experiments reveal that the stochastic programming approach results in significantly fewer alterations to the original workforce plan. When using a commercial linear programming package CPLEX 9.0 to solve the deterministic equivalent form directly, except for a few small-sized problems, this software failed to produce solutions due to memory limitations, while the proposed Benders' decomposition-based solution approach consistently solved all the practical-sized test problems with reasonable effort.
To summarize, this dissertation provides a significant advancement in the algorithmic development for solving two-stage stochastic mixed-integer programs having 0-1 mixed-integer variables in both stages, as well as in its application to two important contemporary real-world applications. The framework for the proposed solution approaches is to formulate tighter relaxations via partial convex hull representations and to exploit the resulting structure using suitable decomposition methods. As decision robustness is becoming increasingly relevant from an economic viewpoint, and as computer technological advances provide decision-makers the ability to explore a wide variety of scenarios, we hope that the proposed algorithms will have a notable positive impact on solving stochastic mixed-integer programs. In particular, the proposed stochastic programming airline fleet assignment and the workforce planning approaches studied herein are well-poised to enhance the profitability and robustness of decisions made in the related industries, and we hope that similar improvements are adapted by more industries where decisions need to be made in the light of data that is shrouded by uncertainty. / Ph. D.
|
8 |
Integrated Aircraft Fleeting, Routing, and Crew Pairing Models and Algorithms for the Airline IndustryShao, Shengzhi 23 January 2013 (has links)
The air transportation market has been growing steadily for the past three decades since the airline deregulation in 1978. With competition also becoming more intense, airline companies have been trying to enhance their market shares and profit margins by composing favorable flight schedules and by efficiently allocating their resources of aircraft and crews so as to reduce operational costs. In practice, this is achieved based on demand forecasts and resource availabilities through a structured airline scheduling process that is comprised of four decision stages: schedule planning, fleet assignment, aircraft routing, and crew scheduling. The outputs of this process are flight schedules along with associated assignments of aircraft and crews that maximize the total expected profit.
Traditionally, airlines deal with these four operational scheduling stages in a sequential manner. However, there exist obvious interdependencies among these stages so that restrictive solutions from preceding stages are likely to limit the scope of decisions for succeeding stages, thus leading to suboptimal results and even infeasibilities. To overcome this drawback, we first study the aircraft routing problem, and develop some novel modeling foundations based on which we construct and analyze an integrated model that incorporates fleet assignment, aircraft routing, and crew pairing within a single framework.
Given a set of flights to be covered by a specific fleet type, the aircraft routing problem (ARP) determines a flight sequence for each individual aircraft in this fleet, while incorporating specific considerations of minimum turn-time and maintenance checks, as well as restrictions on the total accumulated flying time, the total number of takeoffs, and the total number of days between two consecutive maintenance operations. This stage is significant to airline companies as it directly assigns routes and maintenance breaks for each aircraft in service. Most approaches for solving this problem adopt set partitioning formulations that include exponentially many variables, thus requiring the design of specialized column generation or branch-and-price algorithms. In this dissertation, however, we present a novel compact polynomially sized representation for the ARP, which is then linearized and lifted using the Reformulation-Linearization Technique (RLT). The resulting formulation remains polynomial in size, and we show that it can be solved very efficiently by commercial software without complicated algorithmic implementations. Our numerical experiments using real data obtained from United Airlines demonstrate significant savings in computational effort; for example, for a daily network involving 344 flights, our approach required only about 10 CPU seconds for deriving an optimal solution.
We next extend Model ARP to incorporate its preceding and succeeding decision stages, i.e., fleet assignment and crew pairing, within an integrated framework. We formulate a suitable representation for the integrated fleeting, routing, and crew pairing problem (FRC), which accommodates a set of fleet types in a compact manner similar to that used for constructing the aforementioned aircraft routing model, and we generate eligible crew pairings on-the-fly within a set partitioning framework. Furthermore, to better represent industrial practice, we incorporate itinerary-based passenger demands for different fare-classes. The large size of the resulting model obviates a direct solution using off-the-shelf software; hence, we design a solution approach based on Benders decomposition and column generation using several acceleration techniques along with a branch-and-price heuristic for effectively deriving a solution to this model. In order to demonstrate the efficacy of the proposed model and solution approach and to provide insights for the airline industry, we generated several test instances using historical data obtained from United Airlines. Computational results reveal that the massively-sized integrated model can be effectively solved in reasonable times ranging from several minutes to about ten hours, depending on the size and structure of the instance. Moreover, our benchmark results demonstrate an average of 2.73% improvement in total profit (which translates to about 43 million dollars per year) over a partially integrated approach that combines the fleeting and routing decisions, but solves the crew pairing problem sequentially. This improvement is observed to accrue due to the fact that the fully integrated model effectively explores alternative fleet assignment decisions that better utilize available resources and yield significantly lower crew costs. / Ph. D.
|
Page generated in 0.0476 seconds