• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 47
  • 20
  • 15
  • 6
  • 6
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 176
  • 37
  • 37
  • 26
  • 25
  • 23
  • 23
  • 23
  • 22
  • 22
  • 21
  • 20
  • 19
  • 18
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Regulation of Toll-like Receptor Signal Transduction Pathways

Lu, Yong-Chen 24 September 2009 (has links)
The stimulation of Toll-like receptors (TLRs) by pathogen-associated molecular patterns (PAMPs) activates macrophages and dendritic cells to response to pathogens. These activated cells induce many immune-related genes, including proinflammatory cytokines which are necessary to activate immune responses against infection. TLRs and their signaling components have been linked to several human diseases, including pyogenic infection and sepsis. Sepsis often occurs in cancer patients treated with chemotherapy. The first focus of this work is to understand how TLR signal transduction pathways regulate the induction of proinflammatory cytokines. TLR stimulation triggers a signaling pathway via MyD88 and IRAK-4 that is essential for proinflammatory cytokine induction. In this study, I found that MyD88-deficient macrophages had defective c-Rel activation, which has been linked to IL-12 p40 induction. In addition, the expression of C/EBPbeta and C/EBPdelta was limited in MyD88- or IRAK-4-deficient macrophages treated with LPS. Importantly, the absence of both C/EBPbeta and C/EBPdelta resulted in the impaired induction of proinflammatory cytokines stimulated by several TLR ligands. These results identify both c-Rel and C/EBPbeta/delta as important transcription factors in a MyD88-dependent pathway that regulate the induction of proinflammatory cytokines. The second focus of this work is to understand the function of TREM2 and how TREM2 regulates TLR-mediated immune responses. TREM2 and DAP12 deficiencies were found in human patients with Nasu-Hakola disease, but the biology of TREM2 remains unclear. To study the function of TREM2 in dendritic cells, TREM2-deficient mice were generated. I found that TREM2 down-regulated the expression of proinflammatory cytokines induced by TLRs. The TREM2 ligand was expressed on activated T cells, and TREM2 enhanced the expression of IFN-gamma in antigen-specific T cells. In a mouse model of autoimmune diabetes, TREM2-deficient mice were resisted to CD8+ T cell-mediated beta-cell destruction. Therefore, TREM2 can positively or negatively regulate TLR-mediated immune responses in selective conditions. Together, the results presented in this thesis provide further understanding of how c-Rel, C/EBPbeta/delta, and TREM2 control and modulate TLR-mediated responses. Understanding these processes may ultimately provide novel therapeutic strategies to modulate immune responses in patients suffered from infectious diseases and cancer.
2

Regulation of Toll-like Receptor Signal Transduction Pathways

Lu, Yong-Chen 24 September 2009 (has links)
The stimulation of Toll-like receptors (TLRs) by pathogen-associated molecular patterns (PAMPs) activates macrophages and dendritic cells to response to pathogens. These activated cells induce many immune-related genes, including proinflammatory cytokines which are necessary to activate immune responses against infection. TLRs and their signaling components have been linked to several human diseases, including pyogenic infection and sepsis. Sepsis often occurs in cancer patients treated with chemotherapy. The first focus of this work is to understand how TLR signal transduction pathways regulate the induction of proinflammatory cytokines. TLR stimulation triggers a signaling pathway via MyD88 and IRAK-4 that is essential for proinflammatory cytokine induction. In this study, I found that MyD88-deficient macrophages had defective c-Rel activation, which has been linked to IL-12 p40 induction. In addition, the expression of C/EBPbeta and C/EBPdelta was limited in MyD88- or IRAK-4-deficient macrophages treated with LPS. Importantly, the absence of both C/EBPbeta and C/EBPdelta resulted in the impaired induction of proinflammatory cytokines stimulated by several TLR ligands. These results identify both c-Rel and C/EBPbeta/delta as important transcription factors in a MyD88-dependent pathway that regulate the induction of proinflammatory cytokines. The second focus of this work is to understand the function of TREM2 and how TREM2 regulates TLR-mediated immune responses. TREM2 and DAP12 deficiencies were found in human patients with Nasu-Hakola disease, but the biology of TREM2 remains unclear. To study the function of TREM2 in dendritic cells, TREM2-deficient mice were generated. I found that TREM2 down-regulated the expression of proinflammatory cytokines induced by TLRs. The TREM2 ligand was expressed on activated T cells, and TREM2 enhanced the expression of IFN-gamma in antigen-specific T cells. In a mouse model of autoimmune diabetes, TREM2-deficient mice were resisted to CD8+ T cell-mediated beta-cell destruction. Therefore, TREM2 can positively or negatively regulate TLR-mediated immune responses in selective conditions. Together, the results presented in this thesis provide further understanding of how c-Rel, C/EBPbeta/delta, and TREM2 control and modulate TLR-mediated responses. Understanding these processes may ultimately provide novel therapeutic strategies to modulate immune responses in patients suffered from infectious diseases and cancer.
3

THE FUNCTION OF INTERLEUKIN-1 RECEPTOR ASSOCIATED KINASE 2 IN TOLL-LIKE RECEPTOR-MEDIATED SIGNALING

Wan, Youzhong January 2010 (has links)
No description available.
4

Structural basis of membrane targeting and regulation of the innate immunity adaptor TIRAP by its phosphoinositide-binding motif

Zhao, Xiaolin 12 July 2016 (has links)
Toll-like receptors (TLRs) are the main components of the innate immunity. Pathogen-activated TLRs trigger a cytoplasmic signaling cascade through adaptor proteins, with the first being the TIR domain-containing adaptor protein (TIRAP). TIRAP contains a TIR domain, which associates with TLRs and other adaptor proteins; and a N-terminal phosphoinositide-binding motif (PBM) that mediates the membrane recruitment of TIRAP. Upon ligand activation, TLRs are recruited to the phosphoinositide (PIP)-enriched region in the membrane, where TIRAP recruits other adaptors to the membrane to activate TLR signaling pathway. To investigate the mechanism of membrane targeting of TIRAP and the basis for its regulation, I functionally and structurally characterized TIRAP and its PBM using biophysical approaches. I show that TIRAP PBM adopts helical structural in dodecylphosphocholine (DPC) micelles and other membrane mimics. NMR studies reveal that TIRAP PBM binds PIPs following a fast exchange regime with a moderate affinity through two conserved basic termini. Mutation of these two basic regions abolishes PIPs binding without distorting the helical structure of the peptide. Solution NMR structure of TIRAP PBM exhibits a central relatively hydrophobic helix surrounded by the flexible N- and C-termini. Paramagnetic studies indicate that the helix is close to the micelle core, whereas two termini are located on the micellar surface. Nuclear spin relaxation experiments indicate that the two termini of TIRAP PBM become more ordered when bound to PIP, thus, we propose that the central helix in PBM is responsible for membrane insertion, whereas the two sets of basic residues interact with PIPs to stabilize TIRAP's membrane interaction. Phosphomimetic mutation of Thr28 to Asp (T28D) as well as phosphorylation in Thr28 inhibit TIRAP PBM's binding to phosphoinositides by distorting the central helical structure of the peptide. More importantly, TIRAP T28D disrupt its subcellular localization in vivo. Thus, phosphorylation can impair proper insertion of TIRAP at the plasma membrane through PBM and, consequently, it may represent the first signal that promotes TIRAP degradation. / Ph. D.
5

Sporothrix brasiliensis: aspectos imunológicos e virulência / Sporothrix brasiliensis: immunological aspects and virulence.

Rossato, Luana 08 December 2017 (has links)
A esporotricose caracteriza-se como uma micose subcutânea causada por fungos dimórficos do gênero Sporothrix, capazes de acometer o homem e uma grande variedade de animais, dentre eles os felinos. A princípio, Sporothrix schenckii era a única espécie conhecida como responsável pela esporotricose. Após estudos genotípicos e fenotípicos de isolados ambientais, clínicos humanos e animais, verificou-se alta variabilidade entre os isolados e estabeleceu-se a existência de um Complexo Sporothrix. Dentro deste, a maior causadora de surtos epidêmicos, justificada por uma maior virulência e capacidade de evasão da resposta imune, é a espécie Sporothrix brasiliensis. Nesse sentido, dada a ausência de estudos direcionados a está espécie, objetivou-se avaliar a importância de receptores Toll like-2 (TLR-2) e Toll like-4 (TLR-4) na infecção por S. brasiliensis. Além disso, utilizando técnicas de proteômica, procurou-se elucidar proteínas diferencialmente expressas em S. brasiliensis quando comparado à espécie S. schenckii. Para avaliação da resposta imune utilizaram-se modelos in vitro e in vivo de infecção, e para a investigação das proteínas diferencialmente expressas, utilizou-se a técnica de proteômica Bottom-up. A investigação da resposta imune in vitro mostrou a dependência dos receptores TLR-2 e TLR-4 no desencadeamento da resposta imune. Os ensaios in vivo mostraram a importância desses receptores no controle da infecção e dependência dos mesmos na produção de citocinas, principalmente nos primeiros 14 dias de infecção. Na ausência do receptor TLR-2, houve a polarização de resposta Th17 na tentativa de controle da infecção. Quando avaliadas as diferenças entre as espécies S. brasiliensis e S. schenckii, em termos de proteínas expressas, verificou-se que S. brasiliensis expressa diferencialmente 60 proteínas. Dentre essas, 9 são relatadas na literatura, como importantes na virulência e escape imunológico dos principais fungos de importância médica. Os resultados encontrados no presente trabalho permitem concluir que reconhecimento de S. brasiliensis é dependente dos receptores TLR-2 e TLR-4. Estudos que investiguem a utilização de outras vias de sinalização como mecanismos compensatórios, bem como, o sinergismo desses receptores no contexto da infecção por S. brasiliensis são fundamentais na compreensão da fisiopatologia dessa doença. No que tange a caracterização proteica, estudos com mutantes para cada uma das proteínas descritas nesse trabalho devem ser avaliados. / Sporotrichosis is a subcutaneous mycosis caused by dimorphic fungi of the genus Sporothrix that affects humans and animals, predominantelly felines. Inicially, Sporothrix schenckii was the only specie associated to sporotrichosis. However, after genotypic and phenotypic studies of human and animal clinical isolates, a high variability among the isolates was found and was concluded the existence of a complex: the Sporothrix Complex. Inside the Sporothrix complex, the major cause of epidemic outbreaks, justified by a greater virulence and ability to evade the immune system, is Sporothrix brasiliensis. Concerning this, the absence of studies directed to this specific specie, the aim was to evaluate the importance of Toll like receptor-2 (TLR-2) and Toll like receptor-4 (TLR-4) during S. brasiliensis infection. In addition, was look using proteomics techniques, the proteins differentially expressed in S. brasiliensis when compared to S. schenckii. To evaluate the immune response, in vitro and in vivo tecniques were used, and for the investigation of differentially expressed proteins, the Bottom-up proteomics technique was used. The investigation of the in vitro immune response showed the dependence of TLR-2 and TLR-4 receptors on phagocytosis and the production of inflammatory mediators, such as cytokines and NO. In vivo assays showed the importance of these receptors to control the infection and their dependence on cytokine production during the first 14 days of infection. In the absence of the TLR-2 receptor, the Th17 response was polarized in an attempt to control the infection. Evaluating the differences between S. brasiliensis and S. schenckii, in terms of expressed proteins, it was verified that S. brasiliensis differentially expressed 60 proteins. Among these, 9 are reported in the literature, as important in the virulence and immune evasion among the most important medical fungi. The results found in the present study allow to conclude that S. brasiliensis recognition is dependent on TLR-2 and TLR-4 receptors. Studies investigating the use of other signaling pathways as compensatory mechanisms, as well as the synergism of these receptors in the context of S. brasiliensis infection, are fundamental to understand the pathophysiology of this disease. Regarding the protein characterization, studies with mutants for each of the proteins described in this work should be evaluated.
6

Expression and characterization of ligand binding by the ectodomain of toll-like receptor 9

Potter, Jean Elizabeth Anore 04 September 2007
Toll-like receptor 9 (TLR9) activates the innate immune system in response to microbial DNA or mimicking oligodeoxynucleotides. While the discrimination of host and microbial DNA is presumed to reflect TLR9-mediated recognition of CpG motifs, little information is available to verify this hypothesis. Cell stimulation experiments demonstrate preferential activation of TLR9 by CpG-containing nucleic acids, however direct binding investigations have reached contradictory conclusions with respect to the ability of TLR9 to bind nucleic acids in a sequence-specific fashion. Here we report expression of the soluble, ectodomain of human TLR9 with characterization of its ligand-binding properties. TLR9 has a high degree of ligand specificity in being able to discriminate not only CpG dinucleotides, but also higher order six nucleotide motifs that mediate species-specific activation. However, TLR9 ligand binding is also functionally influenced by nucleic acids in a sequence-independent manner both in vitro and in cell proliferation experiments. A model is proposed in which TLR9 activation is mediated specifically by CpG-containing ligands while sensitivity is mediated specifically by the absolute concentration of nucleic acids in a sequence-independent manner.<p>The bovine hsp70A promoter was used to direct the heat-regulated synthesis of the ectodomain of human TLR9 in transfected cultured bovine cells. The protein was efficiently secreted from transfected cells in a temperature-dependent manner and the recombinant receptor produced was found to be relatively pure. A stably transfected cell line with regulated expression of the protein was obtained and repeated thermal cycling of the cultures enabled high-yield production of the receptor in an active ligand-binding form. Using this recombinant receptor to study the ligand binding properties of TLR9, a model of positive cooperativity is proposed in which the sensitivity of TLR9 ligand binding is modulated by the absolute concentration of nucleic acids in a sequence-independent fashion, while activation of TLR9 is highly dependent on DNA sequence. That is to say that TLR9 is primed for activation by interaction with non-activating sequences but activation itself occurs in a sequence-specific fashion.
7

Expression and characterization of ligand binding by the ectodomain of toll-like receptor 9

Potter, Jean Elizabeth Anore 04 September 2007 (has links)
Toll-like receptor 9 (TLR9) activates the innate immune system in response to microbial DNA or mimicking oligodeoxynucleotides. While the discrimination of host and microbial DNA is presumed to reflect TLR9-mediated recognition of CpG motifs, little information is available to verify this hypothesis. Cell stimulation experiments demonstrate preferential activation of TLR9 by CpG-containing nucleic acids, however direct binding investigations have reached contradictory conclusions with respect to the ability of TLR9 to bind nucleic acids in a sequence-specific fashion. Here we report expression of the soluble, ectodomain of human TLR9 with characterization of its ligand-binding properties. TLR9 has a high degree of ligand specificity in being able to discriminate not only CpG dinucleotides, but also higher order six nucleotide motifs that mediate species-specific activation. However, TLR9 ligand binding is also functionally influenced by nucleic acids in a sequence-independent manner both in vitro and in cell proliferation experiments. A model is proposed in which TLR9 activation is mediated specifically by CpG-containing ligands while sensitivity is mediated specifically by the absolute concentration of nucleic acids in a sequence-independent manner.<p>The bovine hsp70A promoter was used to direct the heat-regulated synthesis of the ectodomain of human TLR9 in transfected cultured bovine cells. The protein was efficiently secreted from transfected cells in a temperature-dependent manner and the recombinant receptor produced was found to be relatively pure. A stably transfected cell line with regulated expression of the protein was obtained and repeated thermal cycling of the cultures enabled high-yield production of the receptor in an active ligand-binding form. Using this recombinant receptor to study the ligand binding properties of TLR9, a model of positive cooperativity is proposed in which the sensitivity of TLR9 ligand binding is modulated by the absolute concentration of nucleic acids in a sequence-independent fashion, while activation of TLR9 is highly dependent on DNA sequence. That is to say that TLR9 is primed for activation by interaction with non-activating sequences but activation itself occurs in a sequence-specific fashion.
8

Alteration of Innate Immune Reaction in Patients with Type 2 Diabetes Mellitus

Chuang, Hua 22 June 2006 (has links)
Diabetes mellitus (DM) is the 4th leading cause of mortality in Taiwan. Chronic persistent inflammation as demonstrated by higher proinflammatory mediators in blood has been correlated to cardiovascular complications of type 2 DM. The cellular and molecular mechanism of chronic inflammation in type 2 DM remains to be determined. This study was conducted to explore altered innate immunity in toll-like receptor (TLR) expression and signaling of monocytes from type 2 DM patients. Blood leukocytes from type 2 DM patients were counted and studied for TLR2 and TLR4 expression and signaling. Each experiment was run with 1 to 2 type 2 DM patients, simultaneously with 1 to 2 age-matched normal adults as controls. 31 type 2 DM patients and 37 normal age-matched controls completed the study. Results showed that blood monocytes from type 2 DM patients had a significantly higher TLR4 but not TLR2 expression. Using a TLR4 ligand, lipopolysaccharide (LPS), to trigger TNF£\ production, a significantly higher TNF£\ production by blood leukocytes from type 2 DM patients than age-matched controls was found. The higher TNF£\ production by blood leukocytes from type 2 DM patients was associated with down-regulation of suppressor of cytokine signaling 1and 3 (SOCS-1 and SOCS-3) expression. We have further postulated that increase of oxidative stress or decrease of IFN-£\ production in type 2 DM patients was related to the alteration of TLR-4 response. Correction of SOCS-1 expression by addition of antioxidant, superoxide dismutase (SOD), but not IFN-£\, significantly decreased TNF£\ production in blood leukocytes from type 2 DM patients. This study is the first in the literature to identify an alteration of TLR4 expression associated with depressed SOCS-1 expression in leukocytes of type 2 DM patients. Results from this study highlight a potential pathway to improve chronic inflammation of type 2 DM patients via modulation of TLR4 expression and SOCS-1 mRNA expression of leukocytes.
9

Sporothrix brasiliensis: aspectos imunol&oacute;gicos e virul&ecirc;ncia / Sporothrix brasiliensis: immunological aspects and virulence.

Luana Rossato 08 December 2017 (has links)
A esporotricose caracteriza-se como uma micose subcutânea causada por fungos dimórficos do gênero Sporothrix, capazes de acometer o homem e uma grande variedade de animais, dentre eles os felinos. A princípio, Sporothrix schenckii era a única espécie conhecida como responsável pela esporotricose. Após estudos genotípicos e fenotípicos de isolados ambientais, clínicos humanos e animais, verificou-se alta variabilidade entre os isolados e estabeleceu-se a existência de um Complexo Sporothrix. Dentro deste, a maior causadora de surtos epidêmicos, justificada por uma maior virulência e capacidade de evasão da resposta imune, é a espécie Sporothrix brasiliensis. Nesse sentido, dada a ausência de estudos direcionados a está espécie, objetivou-se avaliar a importância de receptores Toll like-2 (TLR-2) e Toll like-4 (TLR-4) na infecção por S. brasiliensis. Além disso, utilizando técnicas de proteômica, procurou-se elucidar proteínas diferencialmente expressas em S. brasiliensis quando comparado à espécie S. schenckii. Para avaliação da resposta imune utilizaram-se modelos in vitro e in vivo de infecção, e para a investigação das proteínas diferencialmente expressas, utilizou-se a técnica de proteômica Bottom-up. A investigação da resposta imune in vitro mostrou a dependência dos receptores TLR-2 e TLR-4 no desencadeamento da resposta imune. Os ensaios in vivo mostraram a importância desses receptores no controle da infecção e dependência dos mesmos na produção de citocinas, principalmente nos primeiros 14 dias de infecção. Na ausência do receptor TLR-2, houve a polarização de resposta Th17 na tentativa de controle da infecção. Quando avaliadas as diferenças entre as espécies S. brasiliensis e S. schenckii, em termos de proteínas expressas, verificou-se que S. brasiliensis expressa diferencialmente 60 proteínas. Dentre essas, 9 são relatadas na literatura, como importantes na virulência e escape imunológico dos principais fungos de importância médica. Os resultados encontrados no presente trabalho permitem concluir que reconhecimento de S. brasiliensis é dependente dos receptores TLR-2 e TLR-4. Estudos que investiguem a utilização de outras vias de sinalização como mecanismos compensatórios, bem como, o sinergismo desses receptores no contexto da infecção por S. brasiliensis são fundamentais na compreensão da fisiopatologia dessa doença. No que tange a caracterização proteica, estudos com mutantes para cada uma das proteínas descritas nesse trabalho devem ser avaliados. / Sporotrichosis is a subcutaneous mycosis caused by dimorphic fungi of the genus Sporothrix that affects humans and animals, predominantelly felines. Inicially, Sporothrix schenckii was the only specie associated to sporotrichosis. However, after genotypic and phenotypic studies of human and animal clinical isolates, a high variability among the isolates was found and was concluded the existence of a complex: the Sporothrix Complex. Inside the Sporothrix complex, the major cause of epidemic outbreaks, justified by a greater virulence and ability to evade the immune system, is Sporothrix brasiliensis. Concerning this, the absence of studies directed to this specific specie, the aim was to evaluate the importance of Toll like receptor-2 (TLR-2) and Toll like receptor-4 (TLR-4) during S. brasiliensis infection. In addition, was look using proteomics techniques, the proteins differentially expressed in S. brasiliensis when compared to S. schenckii. To evaluate the immune response, in vitro and in vivo tecniques were used, and for the investigation of differentially expressed proteins, the Bottom-up proteomics technique was used. The investigation of the in vitro immune response showed the dependence of TLR-2 and TLR-4 receptors on phagocytosis and the production of inflammatory mediators, such as cytokines and NO. In vivo assays showed the importance of these receptors to control the infection and their dependence on cytokine production during the first 14 days of infection. In the absence of the TLR-2 receptor, the Th17 response was polarized in an attempt to control the infection. Evaluating the differences between S. brasiliensis and S. schenckii, in terms of expressed proteins, it was verified that S. brasiliensis differentially expressed 60 proteins. Among these, 9 are reported in the literature, as important in the virulence and immune evasion among the most important medical fungi. The results found in the present study allow to conclude that S. brasiliensis recognition is dependent on TLR-2 and TLR-4 receptors. Studies investigating the use of other signaling pathways as compensatory mechanisms, as well as the synergism of these receptors in the context of S. brasiliensis infection, are fundamental to understand the pathophysiology of this disease. Regarding the protein characterization, studies with mutants for each of the proteins described in this work should be evaluated.
10

Reconnaissance du virus murin MHV-68 par le "Toll-like receptor" 2

Michaud, François 18 April 2018 (has links)
Les virus herpétiques sont des pathogènes ubiquitaires caractérisés, entre autres, par la persistance de leur génome au sein de l'hôte. Parmi ceux-ci, le virus Epstein-Barr (EBV) est associé à la mononucléose infectieuse, au carcinome du nasopharynx et au lymphome de Burkitt. L'homologie génomique qui existe entre certains virus herpétiques, principalement entre le gammaherpèsvirus murin 68 (MHV-68) et EBV, est établie depuis plusieurs années. Cette homologie est d'autant plus importante que ces virus sont reconnus par le système immunitaire de manière similaire chez leurs hôtes respectifs. Ce système se décline en deux volets complémentaires, soit l'immunité innée et l'immunité acquise. Les "Toll-like receptors" (TLRs) composent l'une des principales familles de récepteurs impliquées dans l'immunité innée. C'est donc sur cet aspect que le projet s'est concentré, et plus précisément sur l'activation du récepteur membranaire TLR2 par le virus MHV-68. Dans un premier temps, nous avons démontré que l'activation du TLR2 par MHV-68 mène à une augmentation de l'activité NF-KB. À l'aide de cellules fibroblastiques embryonnaires (MEFs) provenant de souris C57BL6 TLR2⁻/⁻ ou MyD88⁻/⁻, nous avons prouvé que la synthèse d'IL-6 et d'IFN-α induit par MHV-68 est partiellement dépendante du TLR2 et entièrement dépendante de MyD88. L'induction du gène TLR2 par MHV-68 a pu être établie in vivo à l'aide de souris transgéniques exprimant le gène de la luciférase sous le contrôle du promoteur du TLR2. L'utilisation de MHV-68 irradiée aux UV a donné des résultats similaires suggérant que la transcription génique et la replication virale ne sont pas essentielles à l'activation ni à l'induction du TLR2. Nous avons par la suite mis en évidence par cytometric de flux que le TLR2 était induit à la suite d'une infection par MHV-68 chez les granulocytes, les monocytes circulants et les monocytes inflammatoires recrutés au poumon. Nous avons finalement observé une diminution de la sécrétion d'IFN-α, d'IFN-β et d'IL-6 dans les poumons et la rate des souris TLR2⁻/⁻ et MyD88⁻/⁻ infectées, comparativement aux témoins (WT), et ce, de façon concomitante avec une augmentation de la charge virale. 11 s'agit de la première étude qui prouve que le virus MHV-68 est reconnu par le récepteur membranaire TLR2 murin.

Page generated in 0.0316 seconds