• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 8
  • 2
  • 1
  • Tagged with
  • 20
  • 20
  • 20
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Reconnaissance moléculaire du virus Epstein-Barr par les "Toll-like receptors"

Fiola, Stéphanie 17 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2010-2011 / Le TLR2 et le TLR9 sont membres de la famille des ±Toll-like receptors¿ (TLRs), récepteurs de l'immunité innée, pouvant reconnaître divers motifs de microorganismes. Il est connu que ces deux récepteurs peuvent lier différentes composantes de certains virus de la famille des Herpesviridae. Le TLR2, exprimé à la surface de la cellule, peut reconnaître l'herpès simplex, le cytomegalovirus et varicella zoster. Quant au TLR9, il est exprimé dans les vésicules intracellulaires et peut lier l'ADN double brin étranger présent notamment chez les virus herpétiques. Ces données nous ont poussés à vérifier si une telle interaction était observée entre ces récepteurs et le virus Epstein-Barr (EBV). Nous avons tout d'abord établi, dans un modèle in vitro de cellules HEK293 transfectées avec le TLR2 et un plasmide rapporteur NF[kabba]B-LUC, qu'EBV pouvait activer la voie NF-[kabba]B et ce, dépendamment du TLR2. En effet, l'initiation de la voie NF-[kabba]B par le virus peut être abolie par l'utilisation d'anticorps bloquant/neutralisant contre le TLR2 ou la glycoprotéine 350 (gp350) virale. De plus, nous avons aussi démontré que'EBV pouvait activer la sécrétion de MCP-1 par les monocytes primaires humains, un processus pouvant être inhibé par l'utilisation d'ARNs bloquants contre le TLR2 (SiRNA TLR2). Dans un deuxième temps, nous avons examiné si le génome d'EBV pouvait être reconnu par le TLR9. Les résultats indiquent clairement que les particules intactes d'EBV, ainsi son génome purifié, peuvent induire la sécrétion d'IL-8 par les monocytes humains. Cette induction par l'ADN viral semble de plus être dépendante de l'acidification des endosomes. Le traitement des cellules par un SiRNA TLR2, un ODN inhibiteur du TLR9 ou une combinaison des deux diminue la production d'IL-8, ceci indiquant une coopération probable de ces récepteurs lors de la détection d'EBV. Concernant les cellules dendritiques plasmacytoïdes (pDCs), qui expriment majoritairement le TLR7 et le TLR9, la stimulation avec EBV ou l'ADN viral purifié induit la production d'IFN-α. Une combinaison d'antagonistes du TLR7 et du TLR9 élimine complètement la sécrétion d'IFN-α, supportant ainsi notre hypothèse voulant que le TLR7 puisse aussi contribuer à cette réponse. En conclusion, les résultats présentés dans ce manuscrit démontrent que la famille des TLRs joue un rôle important dans le déclenchement d'une réponse pro-inflammatoire et antivirale suite à la reconnaissance d'EBV, et que l'activation de multiples TLRs par diverses composantes virales permet probablement de potentialiser l'efficacité de celle-ci.
2

Characterization of Epstein-Barr Virus (EBV) strains in primary EBV infection

Kwok, Hin. January 2007 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2008. / Includes bibliographical references (leaf 102-115) Also available in print.
3

The intracellular consequences of the interaction between Epstein-barr virus protein BZLF1 and the human protein Pax5

Wakeman, Brian S. January 1900 (has links)
Thesis (M.S.)--The University of North Carolina at Greensboro, 2008. / Directed by Amy Adamson; submitted to the Dept. of Biology. Title from PDF t.p. (viewed Sep. 4, 2009). Includes bibliographical references (p. 58-61).
4

Étude moléculaire de la régulation de l'interféron alpha dans les monocytes humains infectés par le virus Epstein-Barr

Duval, Annick 11 April 2018 (has links)
Le virus Epstein-Barr (EBV) est un virus herpès oncogène causant la mononucléose infectieuse et est associé à différents types de cancer d'origine épithélial et lymphoïde. Nous avons précédemment démontré que EBV peut infecter et se répliquer dans les monocytes humains. Suite à cette infection, plusieurs fonctions importantes du monocyte s'en trouvent affectées, dont la phagocytose, la biosynthèse de prostaglandine E2 et la production de TNF-oc et d'IFN-a. Il est bien connu que l'IFN de type I (IFN-a/(3) est un puissant médiateur antiviral qui est rapidement sécrété par les cellules infectées lors des stades précoces de l'infection. OBJECTIFS Ce projet vise à caractériser le(s) mécanismes(s) affectant la production d'IFN-a par les monocytes humains infectés par le virus EBV en étudiant notamment la cascade d'activation des protéines JAKs et STATs. MÉTHODES Nous avons évalué l'effet de l'infection des monocytes humains par EBV sur l'activation des facteurs de transcription IRF-3 et IRF-7, sur les protéines de la cascade des JAKs-STATs Qakl, Tyk2, Statl et Stat2) ainsi que sur les protéines SOCS. RÉSULTATS L'activation des protéines IRF-3 et IRF-7 n'est pas affectée, puisqu'il a été possible d'observer une translocation nucléaire de ces facteurs de transcription suite à l'infection par EBV. Cependant, la boucle d'amplification de la voie des JAKs-STATs est supprimée suite à l'inhibition de la phosphorylation de Statl. Le mécanisme d'inhibition de la synthèse d'IFN-a par le virus EBV dans les monocytes humains implique l'activation de la protéine SOCS-3. CONCLUSION Ce projet permet d'approfondir nos connaissances sur les mécanismes immunosuppresseurs mis en œuvre par EBV afin de supprimer les fonctions monocytaires. / Epstein-Barr virus (EBV) is an oncogenic herpesvirus recognized as the causative agent of infectious mononucleosis and is associated with several human malignancies. We have recently provided evidences that human monocytes were permissive to EBV infection and replication. Following infection, EBV can affect various cellular functions of monocytes, such as phagocytosis, biosynthesis of prostaglandins E2 and production of TNF-a and IFN-a. The type I interferon System (IFN-a/p) represents an important elements of host defence against ail kinds of pathogens, mainly viruses. Following infection, virus-infected cells rapidly produce and secrete IFN-a/p. OBJECTIVES The present work aims to determine the mechanism affecting the IFN-a production by the EBV-infected monocytes, in particular by the study of the JAK-STAT pathway. METHODS We examined the effect of EBV infection in monocytes on IRF-3 and IRF-7 nuclear accumulation, on JAKs and STATs proteins activation (Jakl, Tyk2, Statl and Stat2), and on SOCS proteins expression. RESULTS The IRF-3 and IRF-7 activation is not affected, since it was possible to observe a nuclear translocation of these transcription factors following EBV infection. However, the positive-feedback loop of the JAK-STAT pathway was found to be affected by the inhibition of Statl phosphorylation. The mechanism of IFN-a inhibition in EBV-infected monocytes involves the SOCS-3 protein activation. CONCLUSION Further description of EBV inhibitory mechanisms on monocytes immune functions would certainly improve our understanding of the role of these cells in the early stages of EBV pathogenesis.
5

Formation and repair of DNA double-strand breaks caused by ionizing radiation in the Epstein-Barr virus minichromosome

Kumala, Slawomir 18 April 2018 (has links)
L’ADN dans nos cellules est exposé continuellement à des agents génotoxiques. Parmi ceux-ci on retrouve les rayons ultraviolets, les agents mutagènes chimiques d’origine naturelle ou synthétique, les agents radiomimétiques, et les dérivés réactifs de l’oxygène produits par les radiations ionisantes ou par des processus tels que les cycles métaboliques redox. Parmi les dommages infligés par ces agents, les plus dangereux sont les cassures simples- et double-brin de l’ADN qui brisent son intégrité et doivent être réparées immédiatement et efficacement afin de préserver la stabilité et le fonctionnement du génome. Dans la cellule, ces cassures sont formées et réparées au niveau de la chromatine, où l'environnement moléculaire et les évènements impliqués sont plus complexes et les systèmes expérimentaux appropriés pour leur exploration sont peu développés. L’objectif de ma recherche visait ainsi l’exploration de ces processus et le développement de nouveaux modèles qui nous permettraient d’étudier plus précisément la nature de la formation et de la réparation des cassures simple- et double-brin de l’ADN in vivo. J’ai utilisé comme modèle un minichromosome (l’episome du virus Epstein-Barr) d’environ 172 kb, qui possède toutes les caractéristiques de la chromatine génomique. Nous avons observé que la radiation gamma induit un changement conformationnel de l’ADN du minichromosome par la production d’une seule cassure double-brin (CDB) localisée de façon aléatoire. Une fois linéarisé, le minichromosome devient résistant à des clivages supplémentaires et par la radiation ionisante et par d’autres réactifs qui induisent des cassures, indiquant l’existence d’un nouveau mécanisme qui dépend de la structure chromatinienne et par lequel une première CSB dans le minichromosome confère une résistance à la formation d’autres cassures. De plus, la reformation des molécules d’ADN du minichromosome surenroulées après l’irradiation indique que toutes les cassures simple-brin (CSB) et CDB sont réparées et les deux brins fermés de façon covalente. Nos découvertes indiquent que la réparation par ligature d'extrémités d'ADN non homologues est le principal mécanisme responsable de la réparation des CDB, alors que la réparation des CSB est indépendante de la polymérase poly-ADP ribose-1 (PARP-1). La modélisation mathématique de la cinétique de réparation et le calcul des vitesses de réparation a révélé que la réparation des CSB est indépendante de la réparation des CDB, et représente l’étape limitante dans la réparation complète des minichromosomes. Globalement, nous proposons que puisque ce minichromosome est comparable en longueur et en topologie aux boucles d’ADN sous contrainte de la chromatine génomique in vivo, ces observations pourraient fournir une vision plus détaillée de la cassure et de la réparation de la chromatine génomique. / DNA in our cells is exposed continually to DNA-damaging agents. These include ultraviolet light, natural and man-made mutagenic chemicals, and reactive oxygen species generated by ionizing radiation or processes such as redox cycling by heavy metal ions and radio-mimetic drugs. Of the various forms of damage that are inflicted by these mutagens, the most dangerous are the single- and double-strand breaks (SSBs and DSBs) which disrupt the integrity of DNA and have to be repaired immediately and efficiently in order to preserve the stability and functioning of the genome. In the cell, induction and repair of strand breaks takes place in the context of chromatin where the molecular environment and the events involved are more complex and suitable experimental systems to explore them are much less developed. A major focus of my research was therefore aimed towards exploring these processes and developing new models which will allow us to look more precisely into the nature of induction and repair of SSBs and DSBs in DNA in vivo. We used as a model the naturally-occurring, 172 kb long Epstein-Barr virus (EBV) minichromosome which posses all the characteristics of genomic chromatin and is maintained naturally in Raji cells. Gamma-irradiation of cells induces one, randomly-located DSB and several SSBs in the minichromosome DNA, producing the linear form. The minichromosome is then resistant to further cleavage either by ionizing radiation or by other break-inducing reagents, suggesting the existence of a novel mechanism in which a first SSBs or DSBs in the minichromosome DNA results in a conformational change of its chromatin which confers insensitivity to the induction of further breaks. Supercoiled molecules of minichromosome DNA were reformed when cells were incubated after irradiation, implying that all SSBs and DSBs were repaired and both strands were covalently closed. Using specific inhibitors or siRNA depletion of repair enzymes, we found that Non Homologous End Joining was the predominant pathway responsible for DSB repair, whereas repair of SSBs was PARP-1 independent. We could also show clearly that topoisomerases I and II are not required for repair. Mathematical modeling of the kinetics of repair and calculation of rate constants revealed that repair of SSBs was independent of repair of DSBs and was the rate-limiting step in complete repair of minichromosomes. Overall, we propose that since this minichromosome is analogous in length and topology to the constrained loops which genomic chromatin is believed to form in vivo, these observations could provide more detailed insights into DNA breakage and repair in genomic chromatin.
6

The role of dendritic cells in Epstein-Barr virus infection

Chen, Yichen. January 2006 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2006. / Title proper from title frame. Also available in printed format.
7

Méningite virale à Epstein-Barr virus secondaire à une méningite à méningocoque à propos d'un cas /

Bordillon, Laurent Kouri, Dominique El. January 2004 (has links) (PDF)
Thèse d'exercice : Médecine. Médecine générale : Université de Nantes : 2004. / Bibliogr. f. 61-66 [48 réf.].
8

Epstein-barr virus infection in nasopharyngeal epithelial cells

Tsang, Chi-man. January 2008 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2009. / Includes bibliographical references (leaves 212-237) Also available in print.
9

Effets suppresseurs du virus Epstein-Barr sur les fonctions immunitaires du monocyte humain

Savard, Martin 11 April 2018 (has links)
Le virus Epstein-Barr (EBV) est un virus herpès oncogène qui a développé au cours de son évolution un arsenal de contre-mesures lui permettant de déjouer les différentes facettes de la réponse immunitaire de l'hôte. Une partie importante de cette réponse est assurée par les monocytes, qui constituent une composante majeure de la première ligne de défense contre les infections virales. Cependant, le rôle des monocytes dans la pathogenèse du virus EBV ainsi que les tactiques utilisées par celui-ci pour déjouer cet aspect de la réponse immunitaire restent encore largement méconnus. La présente étude démontre que l'EBV peut infecter et se répliquer dans les monocytes humains. En effet, la pénétration et la translocation des particules virales aux noyaux ont pu être mises en évidence par microscopie électronique. De plus, l'expression de gènes viraux associés au cycle lytique, ainsi que la libération de particules virales infectieuses par les monocytes infectés confirment la capacité du virus à se répliquer dans ces cellules. Nos résultats ont également démontré que d'importantes fonctions du monocyte sont affectées suite à l'infection. C'est notamment le cas de la phagocytose, dont l'activité est réduite de plus de 50% dans les cellules infectées. De plus, EBV inhibe également la génération de prostaglandine (PG) E2 par les monocytes en interférant avec l'expression de la COX-2, principale enzyme impliquée dans la biosynthèse des PGs. Des études plus approfondies ont démontré que la protéine virale ZEBRA, laquelle est rapidement exprimée dans les monocytes infectés, inhibe la transactivation du promoteur de la COX-2 par les facteurs de transcription NF-KB et CREB. Cette inhibition est causée par l'interaction physique de ZEBRA avec la TATA-binding protein (TBP), une composante clé du complexe d'initiation de transcription. En résumé, nos résultats suggèrent que l'infection des monocytes par EBV et l'altération de leurs fonctions biologiques pourraient constituer un nouveau mécanisme visant à affaiblir la réponse immunitaire et ainsi favoriser la propagation virale dans les premiers stades de l'infection.
10

Implication du virus Epstein-Barr ainsi que de la protéine virale EBNA1 dans la modification de l’épissage alternatif et dans le développement du cancer de l’estomac

Saavedra Armero, Victoria E. January 2016 (has links)
Le virus Epstein-Barr est un des virus dotés de propriétés oncogéniques. Ceci est inquiétant car le virus est présent sous forme d’infection latente dans 95% de la population adulte au niveau mondial. Bien que ce virus soit associé surtout aux lymphomes, d’autres types de cancer sont aussi connus par leur association à cette infection tels que le carcinome gastrique. En fait, 10% de tous les cas de carcinome gastrique sont associés à la présence du virus Epstein-Barr. Plusieurs protéines du virus ont été étudiées individuellement afin d’établir leurs propriétés oncogéniques. Parmi celles-ci, la protéine virale EBNA1 joue un rôle important au niveau de la carcinogénèse et son expression est détectée au niveau des tissus gastriques cancéreux associés à l’infection par le virus Epstein-Barr. Des études réalisées au cours de ces dernières années montrent la relation entre un patron aberrant de l’épissage alternatif des ARN messagers et différents types de cancer, comme le cancer du sein et de la prostate. Les travaux de recherche présentés dans ce mémoire visent à établir si le virus Epstein-Barr est capable de changer le patron d’épissage alternatif au niveau des tissus cancéreux de l’estomac. L’utilisation de données de séquençage à haut débit fait sur des tissus cancéreux et tissus sains d’estomac (infectés ou non par le virus Epstein-Barr) permettra d’estimer les changements au niveau du patron d’épissage alternatif en relation à l’état des tissus et de la présence du virus Epstein-Barr. Les résultats obtenus nous montrent que l’épissage alternatif de plus de 500 gènes est altéré lorsque le virus est présent. Parmi ces gènes plusieurs codent pour des facteurs d’épissage, des facteurs de transcription, et des suppresseurs de tumeurs qui pourraient être impliqués dans le processus de développement du cancer. Finalement, nos résultats montrent que le patron d’épissage alternatif d’une cellule est modifié lorsque celle-ci est infectée par le virus Epstein-Barr ou qu’elle exprime une de ses protéines virales EBNA1, et ces altérations touchent plusieurs gènes impliqués dans des processus biologiques et qui semblent favoriser le développement du cancer.

Page generated in 0.0844 seconds