Spelling suggestions: "subject:"episomes"" "subject:"épisomes""
1 |
Formation and repair of DNA double-strand breaks caused by ionizing radiation in the Epstein-Barr virus minichromosomeKumala, Slawomir 18 April 2018 (has links)
L’ADN dans nos cellules est exposé continuellement à des agents génotoxiques. Parmi ceux-ci on retrouve les rayons ultraviolets, les agents mutagènes chimiques d’origine naturelle ou synthétique, les agents radiomimétiques, et les dérivés réactifs de l’oxygène produits par les radiations ionisantes ou par des processus tels que les cycles métaboliques redox. Parmi les dommages infligés par ces agents, les plus dangereux sont les cassures simples- et double-brin de l’ADN qui brisent son intégrité et doivent être réparées immédiatement et efficacement afin de préserver la stabilité et le fonctionnement du génome. Dans la cellule, ces cassures sont formées et réparées au niveau de la chromatine, où l'environnement moléculaire et les évènements impliqués sont plus complexes et les systèmes expérimentaux appropriés pour leur exploration sont peu développés. L’objectif de ma recherche visait ainsi l’exploration de ces processus et le développement de nouveaux modèles qui nous permettraient d’étudier plus précisément la nature de la formation et de la réparation des cassures simple- et double-brin de l’ADN in vivo. J’ai utilisé comme modèle un minichromosome (l’episome du virus Epstein-Barr) d’environ 172 kb, qui possède toutes les caractéristiques de la chromatine génomique. Nous avons observé que la radiation gamma induit un changement conformationnel de l’ADN du minichromosome par la production d’une seule cassure double-brin (CDB) localisée de façon aléatoire. Une fois linéarisé, le minichromosome devient résistant à des clivages supplémentaires et par la radiation ionisante et par d’autres réactifs qui induisent des cassures, indiquant l’existence d’un nouveau mécanisme qui dépend de la structure chromatinienne et par lequel une première CSB dans le minichromosome confère une résistance à la formation d’autres cassures. De plus, la reformation des molécules d’ADN du minichromosome surenroulées après l’irradiation indique que toutes les cassures simple-brin (CSB) et CDB sont réparées et les deux brins fermés de façon covalente. Nos découvertes indiquent que la réparation par ligature d'extrémités d'ADN non homologues est le principal mécanisme responsable de la réparation des CDB, alors que la réparation des CSB est indépendante de la polymérase poly-ADP ribose-1 (PARP-1). La modélisation mathématique de la cinétique de réparation et le calcul des vitesses de réparation a révélé que la réparation des CSB est indépendante de la réparation des CDB, et représente l’étape limitante dans la réparation complète des minichromosomes. Globalement, nous proposons que puisque ce minichromosome est comparable en longueur et en topologie aux boucles d’ADN sous contrainte de la chromatine génomique in vivo, ces observations pourraient fournir une vision plus détaillée de la cassure et de la réparation de la chromatine génomique. / DNA in our cells is exposed continually to DNA-damaging agents. These include ultraviolet light, natural and man-made mutagenic chemicals, and reactive oxygen species generated by ionizing radiation or processes such as redox cycling by heavy metal ions and radio-mimetic drugs. Of the various forms of damage that are inflicted by these mutagens, the most dangerous are the single- and double-strand breaks (SSBs and DSBs) which disrupt the integrity of DNA and have to be repaired immediately and efficiently in order to preserve the stability and functioning of the genome. In the cell, induction and repair of strand breaks takes place in the context of chromatin where the molecular environment and the events involved are more complex and suitable experimental systems to explore them are much less developed. A major focus of my research was therefore aimed towards exploring these processes and developing new models which will allow us to look more precisely into the nature of induction and repair of SSBs and DSBs in DNA in vivo. We used as a model the naturally-occurring, 172 kb long Epstein-Barr virus (EBV) minichromosome which posses all the characteristics of genomic chromatin and is maintained naturally in Raji cells. Gamma-irradiation of cells induces one, randomly-located DSB and several SSBs in the minichromosome DNA, producing the linear form. The minichromosome is then resistant to further cleavage either by ionizing radiation or by other break-inducing reagents, suggesting the existence of a novel mechanism in which a first SSBs or DSBs in the minichromosome DNA results in a conformational change of its chromatin which confers insensitivity to the induction of further breaks. Supercoiled molecules of minichromosome DNA were reformed when cells were incubated after irradiation, implying that all SSBs and DSBs were repaired and both strands were covalently closed. Using specific inhibitors or siRNA depletion of repair enzymes, we found that Non Homologous End Joining was the predominant pathway responsible for DSB repair, whereas repair of SSBs was PARP-1 independent. We could also show clearly that topoisomerases I and II are not required for repair. Mathematical modeling of the kinetics of repair and calculation of rate constants revealed that repair of SSBs was independent of repair of DSBs and was the rate-limiting step in complete repair of minichromosomes. Overall, we propose that since this minichromosome is analogous in length and topology to the constrained loops which genomic chromatin is believed to form in vivo, these observations could provide more detailed insights into DNA breakage and repair in genomic chromatin.
|
Page generated in 0.034 seconds