Spelling suggestions: "subject:"loads""
371 |
Design methods for low volume roadsBrito, Lelio January 2011 (has links)
This thesis is concerned with producing a simple method to design low volume roads (LVR) by means of a rationale which accounts for permanent deformation development in granular layers. Rutting is regarded as the main distress mode in unsealed and thinly sealed pavements. Hence, it is desirable that it be analytically approached rather than empirically, as in most design methods. The overall aim of this PhD thesis was to look into the behaviour of in-service roads and from a newly developed process, to advance, in a systematic manner, the elements required to produce a simple mechanistic design procedure. The study took as its basis an assessment of the proximity of the stress distribution in the pavement to the material’s failure envelope. After a literature review on unbound granular materials mechanical behaviour and on low volume roads pavement design methods, Chapters 4 and 5 discuss full scale trials carried out in Scotland on typical forest roads. The overall goal of the trials carried out within the Roads Under Timber Transport project was to establish the effect of weather and seasonal effects on the rutting of forest roads and to improve their performance while enabling the roads to be economically constructed and maintained. It appears that most of the rutting occurring in the sites surveyed came shortly after their construction/resurfacing, leading to the assumption that workmanship may be a highly important variable. Lack of compaction of the layer could be one of the likely reasons for the high initial rutting rates. Establishing the effect of weather on rutting further to the existing knowledge was, however, difficult to achieve; this was mainly due to the difficulties faced in monitoring traffic conditions. A newly developed method was needed to quantify permanent deformation development due to wandering traffic on a non-level pavement; this was achieved by the use of wheel path areas, and seemed to be a way forward in the analysis of rutting in unsealed roads. Accelerated pavement trials are reported that aimed to evaluate the performance of aggregate under soaked conditions and the relative pavement deformation caused by different timber haulage vehicles. A road segment simulating a standard forest road section was constructed in a purpose-built facility located at the Ringour Quarry facility. Ten different trials were carried out combining three different aggregate materials and five types of vehicles. Tyre fitment, axle configuration and tyre pressure were assessed and demonstrated to play an important role on the study of rutting development. Conclusions drawn from the results suggest that management of the tyre inflation pressure and axle overload may be one of the most economic means of managing pavement deterioration in the forest road network. A mechanistic analysis of a variety of unsealed pavements was carried out in Chapter 6; and the newly proposed methodology is described in Chapter 7. With changing loading conditions – e.g. as a consequence of the introduction of Tyre Pressure Control Systems and super single tyres – more detailed analyses are required, so that their effect can be analytically assessed. Then an analytical method is introduced for evaluating the stress-strain condition in thinly surfaced or unsurfaced pavements as typically used in LVR structures. It aims to improve the understanding of the effect of tyre pressure and contact area in regard to permanent deformation. To achieve this, several scenarios were modelled using Kenlayer software varying aggregate material, thickness, stiffness, tyre pressure & arrangement. The results usually show a fairly well defined locus of maximum stresses. By comparing this stress envelope with failure envelope, conclusions could be established about the more damaging effect of super singles over twin tyres and, likewise, the greater damage inflicted by high tyre pressures compared to that incurred by lower tyre pressures. Finally, the framework of the proposed method contributes to LVR pavement design procedures mainly due to its simplicity. It still treats the pavement analytically, permitting a more fundamental description of the behaviour of granular layers than in simple linear elastic analysis, but by simplifying the elasto-plastic analysis for routine use it thereby reduces demands of material characterization and computational skills, thus increasing its utility in practical application.
|
372 |
Effect of the repeated recycling on hot mix asphalt propertiesHeneash, Usama January 2013 (has links)
A significant growth has been shown in recycling of the old asphalt pavement as a technically and environmentally preferred way of rehabilitating the existing pavements during the three decades. However, savings acquired by using this technology may be lost through excessive maintenance processes if the recycled pavement exhibits too much deterioration. The current design methods for recycled HMA hypothesize a state of complete blending between the recycling agent and RAP binder. In practice, the complete blending does not occur as the recycling agent does not penetrate the whole layer of the aged binder around RAP particles (Carpenter and Wolosick, 1980). As a result of this, the resultant binder within the recycled mix differs from the desired binder, leading to dissimilarity in properties of the recycled and virgin mixes. Consequently, if the recycled mix was subjected to ageing and recycling for second time, the respond of its resultant binder will not the same as if it was the desire binder. This in turn may make the performance of recycled mix of second cycle differs from that of first cycle. Therefore studying the effect of repeated recycling on performance of the recycled HMA was the aim of this research. First, three types of RAP (reclaimed asphalt pavement) were manufactured in the laboratory and were utilized to produce three types of recycled HMA. After testing the recycled mixes, they were aged again to the same ageing time and temperature, then were crushed to be used as RAP for next generation of recycling. This process was repeated three times. Bitumen 40/60 pen and 70/100 pen were used for the virgin and recycled mixes respectively. All virgin and recycled mixes were designed to have identical aggregate grading, bitumen content, air voids, and binder viscosity. Stiffness and fatigue characteristics were measured after each cycle by the Indirect Tensile Stiffness Modulus test (ITSM) and Indirect Tensile Fatigue Test (ITFT). The results showed that, in spite of, presence deterioration in stiffness or fatigue resistance after the first cycle, the repeated recycling had no further significant effect on deterioration of these properties. Because there was considerable degradation in performance of recycled mixes after the first cycle, certain factors that were believed to improve the efficiency of mixing of these types of mixtures were investigated. These factors included size of RAP agglomeration, mixing temperature, dry mixing time between superheated aggregate and RAP, warming of RAP, and mixing mechanism. The results showed the importance of all factors in improving the mechanical properties of recycled mixes. However, the most influential factors were mixing temperature and warming of RAP. Durability of recycled mixes to resist moisture damage was assessed by the water sensitivity test. The results demonstrated that the recycled mixes were not susceptible to moisture damage and can resist the harmful action of water better than the virgin mix. An interesting element in this research was the possibility of using the Hirsch model to estimate the rheological properties of effective binder within recycled mixes without applying recovery process.
|
373 |
Highway asset managementYang, Chao January 2013 (has links)
The aim of this thesis is to provide a framework for a decision making system to operate a highway network, to evaluate the impacts of maintenance activities, and to allocate limited budgets and resources in the highway network. This integrated model is composed of a network level traffic flow model (NTFM), a pavement deterioration model, and an optimisation framework. NTFM is applicable for both motorway and urban road networks. It forecasts the traffic flow rates during the day, queue propagation at junctions, and travel delays throughout the network. It uses sub-models associated with different road and junction types which typically comprise the highway. To cope with the two-way traffic flow in the network, an iterative algorithm is utilised to generate the evolution of dependent traffic flows and queues. By introducing a reduced flow rate on links of the network, the effects of strategies employed to carry out roadworks can be mimicked. In addition, a traffic rerouting strategy is proposed to model the driver behaviour, i.e. adjusting original journey plans to reduce journey time when traffic congestion occurs in the road network. A pavement age gain model was chosen as the pavement deterioration model, which is used to evaluate the current pavement condition and predict the rate of pavement deterioration during the planning period. It deploys pavement age gain as the pavement improvement indicator which is simple and easy to apply. Moreover, the deterministic pavement age gain model can be transformed to a probabilistic one, using the normal distribution to describe the stochastic nature of pavement deterioration. A multi-objective and multi-constraint optimisation model was constructed to achieve the best pavement maintenance and rehabilitation (M&R) strategy at the network level. The improved non-dominated sorting genetic algorithm (NSGA-II) is applied to perform system optimisation. Furthermore, the traffic operations on worksites, i.e. lane closure options, start time of the maintenance, and traffic controls, are investigated so as to prevent, or at least to reduce, the congestion that resulted from maintenance and reconstruction works. The case studies indicated that NTFM is capable of identifying the relationship between traffic flows in the network and capturing traffic phenomenon such as queue dynamics. The maintenance cost is reduced significantly using the developed optimisation framework. Also, the cost to the road users is minimised by varying the worksite arrangements. Consequently, the integrated decision making system provides highways agencies with the capability to better manage traffic and pavements in a highway network.
|
374 |
Enhancing pavements for thermal applicationsKeikhaei Dehdezi, Pejman January 2012 (has links)
Renewable energy combined with energy efficiency can offer a viable and influential solution to minimise the harmful consequences of both fossil fuel depletion and increases in the cost of power generation. However, in most cases renewable energy technologies require high initial investments that may deter potential users. Pavement Energy Systems (PES) potentially offer a low-cost solution to sustainable and clean energy generation by utilising the thermo-physical properties and design features of new/existing pavement infrastructure. Within the PES, fluid-filled pipes are buried in the pavement at varying depths and transfer heat to and from the surrounding material, for application as a solar energy collector and/or thermal storage media. The fluid in the pipes can absorb/reject heat to the pavement and deliver useful energy to nearby buildings as well as benefiting the pavement structure and pavement users (in terms of reduced rutting, winter road maintenance, etc.). A significant advantage of such systems is that the pipes can be installed within pavements that are already needed for structural reasons and need not to be installed as single-function elements, as do conventional thermal utilisation systems. In this project, the effect of pavement materials and layer design optimisations on the performance of PES was investigated both theoretically and experimentally. The thermo-physical properties and load-bearing performance of concrete and asphalt pavements, consisting of conventional and unconventional components, were determined. In addition, pseudo 3D transient explicit finite-difference software was developed for modelling and performance analysis of the PES under various operating conditions and configurations. This software is capable of predicting the outlet fluid temperature and temperature distributions within the pavement structure. Furthermore, large-scale physical models of the PES were designed and constructed to compare the performance of the thermally modified pavement structures with those of conventional ones and also to validate the model. The physical model consisted of copper pipes embedded in pavements which were irradiated (causing surface heating) using halogen lamps. The results of thermo-physical optimisation of pavement materials, coupled with mechanical testing, showed that it was possible to achieve a wide range of thermally-modified pavements that can also meet the rigorous functional requirements of an airfield pavement. The experimental comparison between the thermally modified and unmodified concrete pavements revealed that there was potential to enhance both the heat collection and storage capability of concrete pavement structures. In addition, the model’s predicted temperatures in concrete pavements were in good agreement with the experimental ones with a mean error of less than 1°C. A similar comparison on asphalt pavements showed that although the surface temperature was lowered by asphalt modification, there were significant discrepancies between the measured and predicted surface temperatures for both modified and unmodified pavements. Further study was conducted on the pipe/pavement interface using X-Ray Computed Tomography (XRCT). The X-ray images revealed improper bonding between the pavement’s matrix and the pipe that was evidenced by the presence of air voids accumulation around the pipe perimeter, and could explain the significant discrepancy in the modelled temperatures. Furthermore, the validated model was used, for genuine temperature patterns, to simulate the relative influence of both the thermo-physical properties of pavement materials and the pavement layer sequences on the performance of the PES and to determine the implications for pavement design. It was concluded that the enhancements could allow pipes tobe installed deeper within the pavement without having any negative effect on their thermal performances. Pipe installation deeper in the pavement is expected to reduce ‘reflective cracking' under traffic loading as well as enabling future resurfacing of the pavement without damaging the pipe network.
|
375 |
Stresses and deformations in flexible layered pavement systems subjected to dynamic loadsBrown, S. F. January 1967 (has links)
Many of the proposed rational design methods for flexible pavements are concerned with the stresses and strains which occur in the various layers of the structure. The purpose of the work reported is to investigate, in the laboratory, the complete stress and strain distributions set up in the different layers under dynamic loads. Two systems have been investigated, a single layer of clay and a two layer system consisting of a granular base on a clay subgrade. The loading in each case consisted of a single pulse having a duration of loading between 0.1 and 2 sec. The load was uniformly distributed over a circular area and of varying magnitude. In-situ measurements of stress and strain were made using pressure and strain cells, -, at various orientations. Surface deflection was measured with a rectilinear potentiometer. Stress and strain distributions were determined by moving the load relative to the buried transducers. By superimposing results, values of principal stresses and strains and maximum shear were derived. By combining stress and strain measurements, values of in-situ elastic modulus and Poisson's ratio were calculated. Results were compared with elastic theory, both Boussinesq and layered system, the latter being computed using a recently developed program. Stresses showed good agreement with theory in both systems, but strains, being dependent on modulus, were less easy to predict theoretically. In-situ values of modulus were stress dependent for both materials. For the clay, at low stress levels, the modulus increased sharply with decreasing stress, while for the granular material modulus increased with stress level. In the two layer system results compared less favourably with theory, but the important values of tensile horizontal stress above the interface and vertical strain below the interface appear to be predicted adequately. The values of modular ratio were near to unity and hence Boussinesq theory was equally as adequate as the layered system approach for most effects. Strains were predicted with fair accuracy when local values of modulus were used i.e., those in the neighbourhood of the points concerned. The assumption of perfect roughness at the interface, used in most theoretical solutions, was shown to be valid. The stress dependence of modulus is thought to be one of the main problems at present in the application of layered system theory and, for the calculation of strains, in the use of the Boussinesq approach also.
|
376 |
Friction and the texture of aggregate particles used in the road surface courseDunford, Alan January 2013 (has links)
Skid resistance, the road surface’s contribution to friction, is a crucial property of a road surface course required to maintain a safe and serviceable road network. Measurement of skid resistance is restricted by the need to measure the forces acting on a rubber wheel or slider while it is dragged across the surface. If the skid resistance of the road could be determined without the need for contact then measurement could be cheaper and more thorough. One route to achieving this goal is by measurement of the texture of the road that generates the friction experienced by a sliding tyre. However, the form and scale of the texture required is not well defined. The work presented in this thesis attempts to establish a robust methodology for measurement of texture on the surfaces of aggregate particles (the main constituent of the road surface course) so that it can be compared with friction. The stages of development are described in detail and the methodology is employed to examine the changing texture on two types of aggregate. The mechanisms by which these aggregates polish, methods for characterising their surface texture, and the consequences for the friction they are able to generate are explored.
|
377 |
Predicting deterioration for the Saudi Arabia Urban Road NetworkMubaraki, Muhammad January 2010 (has links)
Pavements represent an important infrastructure to all countries. In Saudi Arabia, huge investments have been made in constructing a large network. This network requires great care through conducting periodic evaluation and timely maintenance to keep the network operating under acceptable level of service. Pavement distress prediction and pavement condition prediction models can greatly enhance the capabilities of a pavement management system. These models allow pavement authorities to predict the deterioration of the pavements and consequently determine the maintenance needs and activities, predicting the timing of maintenance or rehabilitation, and estimating the long range funding requirements for preserving the performance of the network. In this study, historical data of pavement distress and pavement condition on the main and secondary road network of Riyadh, Saudi Arabia were collected. These data were categorized, processed, and analyzed. These data have been employed to generate prediction of pavement distress and condition models for the Saudi Arabia Urban Road Network (SAURN). Throughout the study, the most common types of pavement distress on SAURN have been identified. The behavior of these distress types has been investigated. A sigmoid function was found to be an excellent representation of the data. Seven for urban main pavement distress models (UMPDM) have been developed. In addition, six urban secondary pavement distress models (USPDM) have been developed. Moreover, two pavement condition models have also been developed, one for urban main pavement condition (UMPCM), and the other for urban secondary pavement condition (USPCM). The developed models provide a reasonable prediction of pavement condition. The models were assessed by standard error and residual analysis. A suitable procedure for the implementation of the models has also been proposed.
|
378 |
Assessment of bond between asphalt layersMuslich, Sutanto January 2010 (has links)
Asphalt pavements are usually constructed in several layers and most of pavement design and evaluation techniques assume that adjacent asphalt layers are fully bonded together and no displacement is developed between them. However, full bonding is not always achieved and a number of pavement failures have been linked to poor bond condition Theoretical research showed that the distribution of stresses, strains and deflections within the pavement structure is highly influenced by the bond condition between the adjacent layers. Slippage at the interface between the binder course and the base could significantly reduce the life of the overall pavement structure. If slippage occurs within the interface between the surfacing and the binder course, the maximum horizontal tensile strain at the bottom of the surfacing becomes excessive and causing the rapid surfacing failure. This condition becomes worse when a significant horizontal load exists. This thesis is concerned with the assessment of bond between asphalt layers. The main objective of this thesis is to provide guidance for assessing bond between asphalt layers, in order to facilitate the construction of roads with more assurance of achieving the design requirements. Further modification to the modified Leutner test has been performed. An investigation regarding the torque bond test and the effect of trafficking on bond have also been undertaken. A bond database on the modified Leutner test has been developed. An analysis has been performed to estimate the achievable values of bond strengths on typical UK road constructions obtained from the bond database. The values were then compared to the results from an analytical analysis to predict the required bond strength at the interface and other standards in Germany and Switzerland to recommend specification limits of bond strength for UK roads.
|
379 |
Mechanical behaviour of stress absorbing membrane interlayersOgundipe, Olumide Moses January 2012 (has links)
This study assesses the contribution of some selected stress absorbing membrane interlayers (SAMIs) on overlaid pavement performance in delaying the offset of reflective cracking using laboratory and full scale testing. Materials characterization were carried to have knowledge of the properties of the SAMIs and overlay and some of the properties were required as input for the finite element modelling. The characterization tests include the particle size distribution, penetration and softening point tests, dynamic mechanical analysis, indirect tensile stiffness modulus test (ITSM), indirect tensile fatigue test (ITFT) and repeated load axial test (RLAT). The interface bond was investigated using the Leutner shear test and pull off test. The assessment of the contribution of selected SAMIs on overlaid pavement performance in delaying offset of reflective cracking was carried out using a wheel tracking test supported by finite element modelling, a large scale pavement test facility test and a thermal cycling test. The Leutner shear test and pull-off test were used to examine the strength and stiffness of the overlay-SAMI interface. The interface strength/stiffness was determined because it is one of the factors that influence the crack resistance of SAMIs. The wheel tracking test was carried out to evaluate the effects of the thickness and stiffness of SAMI, thickness of overlay, SAMI composition, interface stiffness, load level and temperature on the performance of SAMIs under traffic loading. To study the performance of SAMIs under conditions close to the field, a large pavement test facility test was carried out. The finite element analysis of the wheel tracking test was carried out to evaluate the deflection, stress and strain distribution in a cracked pavement with and without SAMIs. The performance of SAMIs under thermal loading (temperature variation) was investigated using the thermal cycling test. The study shows that SAMI composition, SAMI thickness and stiffness, overlay thickness, interface stiffness, temperature and load levels influence the performance of SAMIs under traffic loading. It also demonstrates that the main factor that influences the performance of SAMIs under thermal loading is the interface stiffness. Design guidelines for the successful use of SAMIs against reflective cracking were prepared and the OLCRACK software was used to demonstrate the benefits of SAMIs in an overlay over a cracked pavement.
|
380 |
Adhesion of asphalt mixturesMohd. Jakarni, Fauzan January 2012 (has links)
Adhesion is defined as the molecular force of attraction in the area of contact between unlike bodies of adhesive materials and substrates that acts to hold the bodies together. In the context of asphalt mixtures, adhesion is used to refer to the amount of energy required to break the adhesive bond between bitumen (bitumen-filler mastic) and aggregates. Thus, adhesive failure can be considered as displacement of bitumen (bitumen-filler) mastic from aggregates surface, which might indicates low magnitude of adhesive bond strength. Adhesion is considered as one of the main fundamental properties of asphalt mixtures, which can be correlated with quality, performance and serviceability. However, despite its significance, research on adhesion of asphalt mixtures is limited and yet there is no established testing technique and procedure that can be used to quantify the adhesive bond strength between bitumen (bitumen-filler mastic) and aggregates. Only in the past few years, some efforts have been conducted in developing testing techniques and procedures for measuring the adhesive bond strength of bitumen and aggregates. However, the developed testing techniques and procedures have not enjoyed universal success and acceptance, and not yet established. Hence, emphasis of this study is focused on the development of laboratory adhesion test method that can be used to directly measure the adhesive bond strength between bitumen (bitumen-filler mastic) and aggregates. Also, adhesive bond strength and failure characteristics of various combinations of asphalt mixture materials over wide ranges of testing conditions were evaluated in order to validate the reliability and efficiency of the developed laboratory adhesion test method. This study was divided into three parts. In Part 1, a detailed review of literature on various testing techniques and procedures used to measure the adhesive bond strength in numerous areas of scientific literature and international standards was performed, in order to assess and thus to propose the most suitable and realistic approach for development of laboratory adhesion test method for asphalt mixtures. In Part 2, the proposed adhesion test method was subjected to evaluation, mainly based on trial and error experimental approach, in order to adapt and thus to develop the criteria and procedures for test setup and apparatus, specimen preparation, testing and data analysis. The established criteria and procedures were then used for detailed evaluation in Part 3, in order to quantify the test results of various combinations of asphalt mixture materials (i.e. bitumen (bitumen-filler mastic) and aggregates) over wide ranges of thicknesses of adhesive layer of bitumen, aspect ratio of specimens, testing conditions (i.e. deformation rates and test temperatures) and conditioning procedures (dry and wet conditionings). Results of the study were subjected to comparative analysis in order to determine the effect of various variables and parameters on the test results, to propose suitable testing conditions and to validate the reliability and efficiency of the laboratory adhesion test method. Upon completion of the study, a draft protocol was developed as guiding principles in conducting the laboratory adhesion test method.
|
Page generated in 0.2142 seconds