• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Arquitetura híbrida inteligente para navegação autônoma de robôs / Intelligent hybrid architecture for robot autonomous navigation

Calvo, Rodrigo 09 March 2007 (has links)
Este projeto consiste em um sistema de navegação autônomo baseado em redes neurais nebulosas modulares capacitando o robô a alcançar alvos, ou pontos metas, em ambientes desconhecidos. Inicialmente, o sistema não tem habilidade para a navegação, após uma fase de experimentos com algumas colisões, o mecanismo de navegação aprimora-se guiando o robô ao alvo de forma eficiente. Uma arquitetura híbrida inteligente é apresentada para este sistema de navegação, baseada em redes neurais artificiais e lógica nebulosa. A arquitetura é hierárquica e costitiui-se de dois módulos responsáveis por gerar comportamentos inatos de desvio de obstáculos e de busca ao alvo. Um mecanismo de aprendizagem por reforço, baseada em uma extensão da lei de Hebb, pondera os comportamentos inatos conflitantes ajustando os pesos sinápticos das redes neurais nos instantes de captura do alvo e de colisão contra obstáculos. A abordagem consolidada em simulação é validada em ambientes reais neste trabalho. Para tanto, este sistema foi implementado e testado no simulador Saphira, ambiente de simulação que acompanha o robô Pioneer I e que denota um estágio anterior aos testes em ambientes reais por apresentar comportamentos do robô similares aos comportamentos do robô móvel. Modificações na arquitetura híbrida foram necessárias para adaptar o sistema de navegação simulado ao sistema incorporado no Pioneer I. Experimentos em ambientes reais demonstraram a eficiência e a capacidade de aprendizagem do sistema de navegação, validando a arquitetura híbrida inteligente para aplicação em robôs móveis / This project consists in a autonomous navigation system based on modular neuro-fuzzy networks that is able to guide the robot in unknown environments from a initial point to the goal. Initially, the system is not able to navigate, but after a trial and error period and some collisions, it improves in guiding the robot to the goal efficiently. A intelligent hybrid architecture is presented for this naviga tion system based on artificial neural networks and fuzzy logic. This architecture is hierarquical and consists in two modules that generate innate behaviors, like obstacles avoiding and target reaching. A reinforcement learning mecanism, based on the extended Hebb law, balances this conflicting innate behaviors adjusting the neural network synaptic weights as obstacle and collision avoidance and target reaching takes place. In this project, the approach is consolidated in simulation and validated in real environments. To this end, this system has been implemented by using Saphira simulator and Pioneer I simulation environment. This simulated evironment is a previous stage of tests performed real time and presents simulated robot behaviors similar to real mobile robot behaviors. The hybrid architecture was modified to adapt the simulated navigation system into Pioneer I software. Experiments in a real environments show the efficiency and learning capabilities of the navigation system, validating the intelligent hybrid architecture for mobile robots applications
2

Sistemas computacionais bio-inspirados : sintese e aplicação em inteligencia computacional e homeostase artificial / Bioinspired computing systems : synthesis and application in computational intelligence and artificial homeostasis

Vargas, Patricia Amancio 15 April 2005 (has links)
Orientadores: Fernando Jose Von Zuben, Leandro Nunes de Castro Silva / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e Computação / Made available in DSpace on 2018-08-06T14:08:06Z (GMT). No. of bitstreams: 1 Vargas_PatriciaAmancio_D.pdf: 4626705 bytes, checksum: b203a58e3f5f1c613db0787b3e396196 (MD5) Previous issue date: 2005 / Resumo: Este trabalho propõe uma classificação circunstancial para sistemas complexos, incluindo uma estrutura unificada de descrição a ser empregada na análise e síntese de sistemas computacionais bio-inspirados. Como um ramo dos sistemas complexos organizados, os sistemas computacionais bio-inspirados admitem uma sub-divisão em sistemas de inteligência computacional e sistemas homeostáticos artificiais. Com base neste formalismo, duas abordagens híbridas são concebidas e aplicadas em problemas de navegação autônoma de robôs. A primeira abordagem envolve sistemas classificadores com aprendizado e sistemas imunológicos artificiais, visando explorar conjuntamente conceitos intrínsecos a sistemas complexos, como auto-organização, evolução e cognição dinâmica. Fundamentada nas interações neuro-imuno-endócrinas do corpo humano, a segunda abordagem propõe um novo modelo de sistema homeostático artificial, explorando mudanças de contexto e efeitos do meio sobre o comportamento autônomo de um robô móvel. Embora preliminares, os resultados obtidos envolvem simulação computacional em ambientes virtuais e alguns experimentos com robôs reais, permitindo extrair conclusões relevantes acerca do potencial das abordagens propostas e abrindo perspectivas para a síntese de sistemas complexos adaptativos de interesse prático / Abstract: This work proposes a circumstantial classification for complex systems, including a unified description structure to be employed in the analysis and synthesis of biologically inspired computing metaphors. Considered as a branch of organized complex systems, these bio-inspired computing frameworks may be subdivided into computation intelligence systems and artificial homeostatic systems. Developed under this formalism, two novel hybrid systems are conceived and applied to robot autonomous navigation problems. The first approach involves learning classifier systems and artificial immune systems, in an attempt to investigate intrinsic concepts of complex systems as self-organization, evolution, and dynamic cognition. Drawn on the principles of the human nervous, immune and endocrine systems, the second approach envisages a new model of an artificial homeostatic system to explore context changes and environmental effects on the behaviour of an autonomous robotic agent. Though preliminary, the obtained results encompass computer simulation on virtual environments in addition to a number of real robot¿s experiments. Relevant conclusions can be invoked, mainly related to the potentiality of the proposed frameworks, thus opening attractive prospects for the synthesis of complex adaptive systems of practical interest / Doutorado / Engenharia de Computação / Doutor em Engenharia Elétrica
3

Arquitetura híbrida inteligente para navegação autônoma de robôs / Intelligent hybrid architecture for robot autonomous navigation

Rodrigo Calvo 09 March 2007 (has links)
Este projeto consiste em um sistema de navegação autônomo baseado em redes neurais nebulosas modulares capacitando o robô a alcançar alvos, ou pontos metas, em ambientes desconhecidos. Inicialmente, o sistema não tem habilidade para a navegação, após uma fase de experimentos com algumas colisões, o mecanismo de navegação aprimora-se guiando o robô ao alvo de forma eficiente. Uma arquitetura híbrida inteligente é apresentada para este sistema de navegação, baseada em redes neurais artificiais e lógica nebulosa. A arquitetura é hierárquica e costitiui-se de dois módulos responsáveis por gerar comportamentos inatos de desvio de obstáculos e de busca ao alvo. Um mecanismo de aprendizagem por reforço, baseada em uma extensão da lei de Hebb, pondera os comportamentos inatos conflitantes ajustando os pesos sinápticos das redes neurais nos instantes de captura do alvo e de colisão contra obstáculos. A abordagem consolidada em simulação é validada em ambientes reais neste trabalho. Para tanto, este sistema foi implementado e testado no simulador Saphira, ambiente de simulação que acompanha o robô Pioneer I e que denota um estágio anterior aos testes em ambientes reais por apresentar comportamentos do robô similares aos comportamentos do robô móvel. Modificações na arquitetura híbrida foram necessárias para adaptar o sistema de navegação simulado ao sistema incorporado no Pioneer I. Experimentos em ambientes reais demonstraram a eficiência e a capacidade de aprendizagem do sistema de navegação, validando a arquitetura híbrida inteligente para aplicação em robôs móveis / This project consists in a autonomous navigation system based on modular neuro-fuzzy networks that is able to guide the robot in unknown environments from a initial point to the goal. Initially, the system is not able to navigate, but after a trial and error period and some collisions, it improves in guiding the robot to the goal efficiently. A intelligent hybrid architecture is presented for this naviga tion system based on artificial neural networks and fuzzy logic. This architecture is hierarquical and consists in two modules that generate innate behaviors, like obstacles avoiding and target reaching. A reinforcement learning mecanism, based on the extended Hebb law, balances this conflicting innate behaviors adjusting the neural network synaptic weights as obstacle and collision avoidance and target reaching takes place. In this project, the approach is consolidated in simulation and validated in real environments. To this end, this system has been implemented by using Saphira simulator and Pioneer I simulation environment. This simulated evironment is a previous stage of tests performed real time and presents simulated robot behaviors similar to real mobile robot behaviors. The hybrid architecture was modified to adapt the simulated navigation system into Pioneer I software. Experiments in a real environments show the efficiency and learning capabilities of the navigation system, validating the intelligent hybrid architecture for mobile robots applications
4

Evolução de redes imunologicas para coordenação automatica de comportamentos elementares em navegação autonoma de robos / Evolution of immune networks for automatic coordination of elementary behaviors on robot autonomous navigation

Michelan, Roberto 20 April 2006 (has links)
Orientadores: Fernando Jose Von Zuben, Mauricio Fernandes Figueiredo / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-06T19:35:31Z (GMT). No. of bitstreams: 1 Michelan_Roberto_M.pdf: 4495515 bytes, checksum: aed72feefc89070579190e862ea0f740 (MD5) Previous issue date: 2006 / Resumo: A concepção de sistemas autônomos de navegação para robôs móveis, havendo múltiplos objetivos simultâneos a serem atendidos, como a coleta de lixo com manutenção da integridade, requer a adoção de técnicas refinadas de coordenação de módulos de comportamento elementar. Modelos de redes imunológicas artificiais podem então ser empregados na proposição de um controlador concebido com base em um processo de mapeamento dinâmico. Os anticorpos da rede são responsáveis pelos módulos de comportamento elementar, na forma de regras do tipo <condição>-<ação>, e as conexões são responsáveis pelos mecanismos de estímulo e supressão entre os anticorpos. A rede iniciará uma resposta imunológica sempre que lhe forem apresentados os antígenos. Estes antígenos representam a situação atual capturada pelos sensores do robô. A dinâmica da rede é baseada no nível de concentração dos anticorpos, definida com base na interação dos anticorpos e dos anticorpos com os antígenos. De acordo com o nível de concentração, um anticorpo é escolhido para definir a ação do robô. Um processo evolutivo é então responsável por definir um padrão de conexões para a rede imunológica, a partir de uma população de redes candidatas, capaz de maximizar o atendimento dos objetivos durante a navegação. Resulta então um sistema híbrido que tem a rede imunológica como responsável por introduzir um processo dinâmico de tomada de decisão e tem agora a computação evolutiva como responsável por definir a estrutura da rede. Para que fosse possível avaliar os controladores (redes imunológicas) a cada geração do processo evolutivo, um ambiente virtual foi desenvolvido para simulação computacional, com base nas características do problema de navegação. As redes imunológicas obtidas através do processo evolutivo foram analisadas e testadas em novas situações, apresentando capacidade de coordenação em tarefas simples e complexas. Os experimentos preliminares com um robô real do tipo Khepera II indicaram a eficácia da ferramenta de navegação / Abstract: The design of an autonomous navigation system for mobile robots, with simultaneous objectives to be satisfied, as garbage collection with maintenance of integrity, requires refined coordination mechanisms to deal with modules of elementary behavior. Models of artificial immune networks can then be applied to produce a controller based on dynamic mapping. The antibodies of the immune network are responsible for the modules of elementary behavior, in the form of <condition>-<action> rules, and the connections are responsible for the mechanisms of stimulation and suppression of antibodies. The network will always start an immune response when antigens are presented. These antigens represent the current output of the robot sensors. The network dynamics is based on the levels of antibody concentration, provided by interaction among antibodies, and among antibodies and antigens. Based on its concentration level, an antibody is chosen to define the robot action. An evolutionary process is then used to define the connection pattern of the immune network, from a population of candidate networks, capable of maximizing the objectives during navigation. As a consequence, a hybrid system is conceived, with an immune network implementing a dynamic process of decision-making, and an evolutionary algorithm defining the network structure. To be able to evaluate the controllers (immune networks) at each iteration of the evolutionary process, a virtual environment was developed for computer simulation, based on the characteristics of the navigation problem. The immune networks obtained by evolution were analyzed and tested in new situations and presented coordination capability in simple and complex tasks. The preliminary experiments on a real Khepera II robot indicated the efficacy of the navigation tool / Mestrado / Engenharia de Computação / Mestre em Engenharia Elétrica

Page generated in 0.105 seconds