• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Roll, Pitch and Yaw Torque Control for a Robotic Bee

Finio, Benjamin 18 December 2012 (has links)
In the last decade, the robotics community has pushed to develop increasingly small, autonomous flapping-wing robotic vehicles for a variety of civilian and military applications. The miniaturization of these vehicles has pushed the boundaries of technology in many areas, including electronics, artificial intelligence, and mechanics; as well as our understanding of biology. In particular, at the insect scale, fabrication, actuation, and flight control of a flapping-wing robot become especially challenging. This thesis addresses these challenges in the context of the “RoboBee” project, which has the goal of creating an autonomous swarm of at-scale robotic bees. A 100mg robot with a 3cm wingspan capable of generating roll, pitch and yaw torques in the range of \(\pm 1\mu Nm\) by using a large, central power actuator to flap the wings and smaller control actuators to steer is presented. A dynamic model is used to predict torque generation capabilities, and custom instrumentation is developed to measure and characterize the vehicle’s control torques. Finally, controlled flight experiments are presented, and the vehicle is capable of maintaining a stable pitch and roll attitude during ascending vertical flight. This is the first successful controlled flight of a truly insect-scale flapping-wing robot. / Engineering and Applied Sciences

Page generated in 0.0571 seconds