• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 8
  • 8
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Moderní technologie využívané ve fyzioterapii u dětí s dětskou mozkovou obrnou / Modern technologies used in physiotherapy at children with cerebral palsy

Hoskovcová, Tereza January 2021 (has links)
Title: Modern technologies used in physiotherapy at children with cerebral palsy Objectives: The goal of this diploma thesis is evaluate the effect of robotic and virtual therapy on motor functions of lower limbs at children with cerebral palsy. Furthermore, the work is focused on summarizing current knowledge about cerebral palsy, robotic and virtual technologies. Methods: The diploma thesis is processed as a literature review from available literary resources. First part of thesis contains all theoretical bases and knowledge's about cerebral palsy, robotic and virtual technologies use in physiotherapy lower limbs at children with this diagnosis. Second part has a descriptive - analytical character and contains analysis of studies, which was used treatment with robotic and virtual technologies. The thesis is concluded with a discussion, which focused mainly on three basic research questions of the diploma thesis. Results: A total of 8 randomized controlled trials that met the criteria for inclusion in this thesis were described. When making recommendations for using robotics and virtual technologies, is necessary to take into account the type of cerebral palsy, the degree of disability according to GMFCS, age, motor deficit and individual abilities and goals of the therapy. Studies show that the...
12

Brain-computer interfaces for inducing brain plasticity and motor learning: implications for brain-injury rehabilitation

Babalola, Karolyn Olatubosun 08 July 2011 (has links)
The goal of this investigation was to explore the efficacy of implementing a rehabilitation robot controlled by a noninvasive brain-computer interface (BCI) to influence brain plasticity and facilitate motor learning. The motivation of this project stemmed from the need to address the population of stroke survivors who have few or no options for therapy. A stroke occurs every 40 seconds in the United States and it is the leading cause of long-term disability [1-3]. In a country where the elderly population is growing at an astounding rate, one in six persons above the age of 55 is at risk of having a stroke. Internationally, the rates of strokes and stroke-induced disabilities are comparable to those of the United States [1, 4-6]. Approximately half of all stroke survivors suffer from immediate unilateral paralysis or weakness, 30-60% of which never regain function [1, 6-9]. Many individuals who survive stroke will be forced to seek institutional care or long-term assistance. Clinicians have typically implemented stroke rehabilitative treatment using active training techniques such as constraint induced movement therapy (CIMT) and robotic therapy [10-12]. Such techniques restore motor activity by forcing the movement of weakened limbs. That active engagement of the weakened limb movement stimulates neural pathways and activates the motor cortex, thus inducing brain plasticity and motor learning. Several studies have demonstrated that active training does in fact have an effect on the way the brain restores itself and leads to faster rehabilitation [10, 13-15]. In addition, studies involving mental practice, another form of rehabilitation, have shown that mental imagery directly stimulates the brain, but is not effective unless implemented as a supplemental to active training [16, 17]. Only stroke survivors retaining residual motor ability are able to undergo active rehabilitative training; the current selection of therapies has overlooked the significant population of stroke survivors suffering from severe control loss or complete paralysis [6, 10]. A BCI is a system or device that detects minute changes in brain signals to facilitate communication or control. In this investigation, the BCI was implemented through an electroencephalograph (EEG) device. EEG devices detect electrical brain signals transmitted through the scalp that corresponded with imagined motor activity. Within the BCI, a linear transformation algorithm converted EEG spectral features into control commands for an upper-limb rehabilitative robot, thus implementing a closed-looped feedback-control training system. The concept of the BCI-robot system implemented in this investigation may provide an alternative to current therapies by demonstrating the results of bypassing motor activity using brain signals to facilitate robotic therapy. In this study, 24 able-bodied volunteers were divided into two study groups; one group trained to use sensorimotor rhythms (SMRs) (produced by imagining motor activity) to control the movement of a robot and the other group performed the 'guided-imagery' task of watching the robot move without control. This investigation looked for contrasts between the two groups that showed that the training involved with controlling the BCI-robot system had an effect on brain plasticity and motor learning. To analyze brain plasticity and motor learning, EEG data corresponding to imagined arm movement and motor learning were acquired before, during, and after training. Features extracted from the EEG data consisted of frequencies in the 5-35Hz range, which produced amplitude fluctuations that were measurably significant during reaching. Motor learning data consisted of arm displacement measures (error) produced during an motor adaptation task performed daily by all subjects. The results of the brain plasticity analysis showed persistent reductions in beta activity for subjects in the BCI group. The analysis also showed that subjects in the Non-BCI group had significant reductions in mu activity; however, these results were likely due to the fact that different EEG caps were used in each stage of the study. These results were promising but require further investigation. The motor learning data showed that the BCI group out-performed non-BCI group in all measures of motor learning. These findings were significant because this was the first time a BCI had been applied to a motor learning protocol and the findings suggested that BCI had an influence on the speed at which subjects adapted to a motor learning task. Additional findings suggested that BCI subjects who were in the 40 and over age group had greater decreases in error after the learning phase of motor assessment. These finding suggests that BCI could have positive long term effects on individuals who are more likely to suffer from a stroke and possibly could be beneficial for chronic stroke patients. In addition to exploring the effects of BCI training on brain plasticity and motor learning this investigation sought to detect whether the EEG features produced during guided-imagery could differentiate between reaching direction. While the analysis presented in this project produced classification accuracies no greater than ~77%, it formed the basis of future studies that would incorporate different pattern recognition techniques. The results of this study show the potential for developing new rehabilitation therapies and motor learning protocols that incorporate BCI.
13

Stratégies d’optimisation d’utilisation d’un exosquelette pour la réadaptation locomotrice des patients avec des troubles neuromoteurs : stratégies d’optimisation d’utilisation d’un exosquelette pour la réadaptation locomotrice des patients avec des troubles neuromoteurs

Cherni, Yosra 09 1900 (has links)
La paralysie cérébrale est la principale cause des troubles de la locomotion chez l’enfant, touchant 2 à 3 enfants pour 1000 naissances. Elle se définit comme un trouble du mouvement et de la posture causant des limitations fonctionnelles dues à une lésion sur un cerveau en développement. La spasticité, la co-contraction excessive, la faiblesse musculaire ainsi que les difformités osseuses limitent l’autonomie de ces enfants. Leur marche est plus lente et plus instable comparée celle des enfants ayant un développement typique. Récemment, les exosquelettes (e.g., Lokomat®) pour la réadaptation de la marche ont montré leur efficacité chez l’adulte avec des troubles neuromoteurs. Néanmoins, les preuves appuyant l'efficacité d'une telle modalité d’entrainement chez les enfants avec paralysie cérébrale restent insuffisantes. En plus de son éventuelle pertinence pour la réadaptation locomotrice, le Lokomat® offre la possibilité d’évaluer certaines fonctions motrices (i.e., la force musculaire, la spasticité). Cependant, ces outils d’évaluation ne sont guère utilisés en raison du manque d’information quant à leurs fiabilités. L’objectif de cette thèse était d’évaluer la pertinence d’utilisation des orthèses robotisées « Lokomat® » à la fois pour l’évaluation des fonctions motrices et la réadaptation de la marche chez des patients avec des troubles neuromoteurs notamment la paralysie cérébrale. Pour répondre à notre objectif général, trois objectifs spécifiques ont été définis afin de : (1) évaluer l’efficacité de la réadaptation locomotrice robotisée pour l’amélioration des paramètres de la marche chez des enfants avec paralysie cérébrale ; (2) évaluer les qualités psychométriques des outils intégrés dans le Lokomat® mesurant la spasticité et la force isométrique afin de déterminer leurs pertinences pour un usage clinique régulier ; et (3) proposer une approche systématique basée sur l’électromyographie pour la personnalisation des réglages du Lokomat® afin de favoriser un entrainement optimal où nous avons ciblé les extenseurs de la hanche. Réalisée dans un contexte de « Living Lab » impliquant le patient, les parents, des cliniciens et des chercheurs, notre première étude a permis d’établir un protocole d’entrainement au Lokomat® réaliste (2 séances/semaines pour 12 semaines) et transférable en clinique et d’en vérifier l’efficacité. Cette intervention sur 24 patients a conduit à une amélioration de la force isométrique des membres inférieurs (+25-74%) ainsi qu’une amélioration des capacités de la marche telles que la vitesse de marche (+20%), la longueur du pas (+14%) et l’endurance (+24%). Les améliorations de la force musculaire et de l’endurance ont été maintenues au suivi après 6 mois. De plus, nos résultats ont mis en évidence des effets positifs, quel que soit le niveau de sévérité (niveaux « GMFCS - Gross Motor Function Classification System » II à IV). Dans la deuxième et troisième études, la fiabilité de deux outils intégrés dans le Lokomat® (L-FORCE et L-STIFF) mesurant respectivement la force musculaire et la spasticité des membres inférieurs a été mesurée à l’aide des coefficients de corrélation intraclasse (CCI) et de l’erreur type de mesure (ETM). La fiabilité intra- et inter-évaluateur du L-FORCE était bonne à excellente (CCI = 0,70 - 0,87 et ETM = 11,9 - 22,5%) pour la mesure de la force isométrique des fléchisseurs et extenseurs de la hanche et du genou chez des enfants avec paralysie cérébrale. La fiabilité intra-évaluateur du L-STIFF était modérée à excellente (CCI = 0,49 – 0,89 ; ETM = 7 – 16%) alors que la fiabilité inter-évaluateur était faible à bonne (CCI = 0,32 – 0,70 ; ETM = 6 - 39%). Ces deux outils ont ainsi une fiabilité intra- et inter-évaluateur supérieure à celle des tests cliniques conventionnels pour la mesure de la force isométrique et de la spasticité chez des enfants avec paralysie cérébrale avec une évaluation dans une position plus proche de celle de la marche. Enfin, notre quatrième étude est une preuve de concept d’une approche systématique basée sur l’électromyographie pour personnaliser et optimiser les réglages du Lokomat® visant à maximiser l’activité électromyographique des extenseurs de la hanche chez deux adultes ayant subi un accident vasculaire cérébral. Nous avons pu ainsi définir des paramètres personnalisés pour un entrainement ciblé au Lokomat à l’aide d’un protocole faisable et simple à déployer. Les deux cas présentés dans l’étude suggèrent un bénéfice significatif pour le renforcement musculaire des extenseurs de la hanche (+43 et 114 %) ainsi qu’une amélioration de l’endurance (+37% et +150%) et de la capacité de déplacement (évolution de l’échelle « Modified Functional Ambulation Classification » de 4 à 7). En conclusion, les résultats de nos travaux motivent l'utilisation d’orthèse robotisée – Lokomat pour la réadaptation locomotrice des enfants avec paralysie cérébrale. Cette approche fournit un environnement d’entrainement standardisé et permet une évaluation objective et globalement fiable des changements de la force et de la spasticité des membres inférieurs. Enfin, afin de donner plus de possibilités motrices à ces patients, l’optimisation des thérapies au Lokomat semble tout à fait réalisable et simple à mettre en place (i.e., en ayant recours à basée sur l’électromyographie et nécessitant seulement deux sessions Lokomat supplémentaires). / Cerebral palsy is the leading cause of childhood gait limitations, affecting 2 to 3 children per 1000 births. It is defined as a movement and posture disorder that causes functional limitations due to the damage of the immature brain. Spasticity, excessive co-contraction, muscle weakness and bone deformities limit the autonomy of these children. Their walking is slower and more unstable compared to that of typically developing children. Recently, exoskeletons for gait rehabilitation (e.g., Lokomat®) have been shown to be effective in adults with neuromotor disorders. However, evidence supporting the effectiveness of such a training modality in children with cerebral palsy remains insufficient. In addition to its apparent relevance for gait rehabilitation, the Lokomat® offers the possibility of evaluating certain motor functions (i.e., muscle strength, spasticity). However, these tools are not used due to the lack of information on the reliability of its measurements. The objective of this thesis was to assess the relevance of the use of robotic orthoses « Lokomat® » for the assessment of motor functions and for gait rehabilitation in patients with neuromotor disorders, such as cerebral palsy. To respond to our general objective, three specific objectives have been defined in order to: (1) provide information on the applicability and effectiveness of robotic locomotor rehabilitation for improving gait parameters in children with cerebral palsy; (2) evaluate the psychometric qualities of the Lokomat® integrated tools measuring spasticity and isometric force in order to determine their suitability for regular clinical use; and (3) propose a systematic approach based on electromyography to personalize Lokomat's settings to promote optimal training for hip extensor strength. Carried out in a « Living Lab » context involving the patient, parents, clinicians and researchers, our 1st study established a realistic Lokomat® training protocol (2 sessions / weeks for 12 weeks) that can be easily transferred to the clinic. This intervention on 24-patients led to significant improvement in the lower limb isometric strength (25-74%) and walking capacities such as walking speed (+20%), step length (+14%) and endurance (+24%). Improvements in muscle strength and endurance had sustained when measured at a 6-month follow-up. In the same study, our results showed that robotic training had a positive effect on muscle strength and gait capacity whatever the level of severity (GMFCS levels II-IV). In the second and third studies, the reliability of the two integrated tools of the Lokomat® (L-FORCE and L-STIFF) assessing muscle strength and spasticity respectively was measured using intraclass correlation coefficient (ICC) and standard error of measurement (SEM). The intra- and inter-tester reliability of the L-FORCE tool was good to excellent (ICC = 0,70 - 0,87 et SEM = 11,9 - 22,5%) for measuring isometric strength of hip and knee flexors and extensors in children with cerebral palsy. For the L-STIFF tool, the intra-tester reliability was moderate to excellent (ICC = 0.49 – 0.89, SEM = 7 – 16%) while the inter-tester reliability was acceptable to good (ICC = 0.32 – 0.70, SEM = 6 - 39%). These two tools have thus greater intra- and inter-tester reliability than conventional clinical tests for measuring isometric strength and spasticity in children with cerebral palsy. Finally, our fourth study is a proof of concept of a systematic approach based on electromyography to personalize and optimize the Lokomat® settings that aim to maximize muscle activity of hip extensors in two post-stroke patients. We were able to set personalized parameters for a targeted Lokomat® training using an easily implementable protocol. It only took two test sessions to determine these settings. The two cases presented in the study showed a significant increase in muscle strength of the hip extensors (+43 and 114 %) as well as improvement in endurance (+37% and +150%) and mobility (from 4 to 7 on the Modified Functional Ambulation Classification). In conclusion, the results of our studies support the use of the Lokomat® robotic orthosis for gait rehabilitation in children with cerebral palsy. This approach provides a standardized training environment and allows an objective and mostly reliable assessment of changes in strength and spasticity of the lower limb. Finally, optimization of Lokomat® training appears to be feasible and easy to implement (i.e., based on electromyography and with only two additional Lokomat® training sessions).

Page generated in 0.1286 seconds