1 |
Automated On-line Diagnosis and Control Configuration in Robotic Systems Using Model Based Analytical RedundancyKmelnitsky, Vitaly M 22 February 2002 (has links)
Because of the increasingly demanding tasks that robotic systems are asked to perform, there is a need to make them more reliable, intelligent, versatile and self-sufficient. Furthermore, throughout the robotic system?s operation, changes in its internal and external environments arise, which can distort trajectory tracking, slow down its performance, decrease its capabilities, and even bring it to a total halt. Changes in robotic systems are inevitable. They have diverse characteristics, magnitudes and origins, from the all-familiar viscous friction to Coulomb/Sticktion friction, and from structural vibrations to air/underwater environmental change. This thesis presents an on-line environmental Change, Detection, Isolation and Accommodation (CDIA) scheme that provides a robotic system the capabilities to achieve demanding requirements and manage the ever-emerging changes. The CDIA scheme is structured around a priori known dynamic models of the robotic system and the changes (faults). In this approach, the system monitors its internal and external environments, detects any changes, identifies and learns them, and makes necessary corrections into its behavior in order to minimize or counteract their effects. A comprehensive study is presented that deals with every stage, aspect, and variation of the CDIA process. One of the novelties of the proposed approach is that the profile of the change may be either time or state-dependent. The contribution of the CDIA scheme is twofold as it provides robustness with respect to unmodeled dynamics and with respect to torque-dependent, state-dependent, structural and external environment changes. The effectiveness of the proposed approach is verified by the development of the CDIA scheme for a SCARA robot. Results of this extensive numerical study are included to verify the applicability of the proposed scheme.
|
2 |
Nonlinear model-based fault detection and isolation : improvements in the case of single/multiple faults and uncertainties in the model parametersCastillo, Iván 15 June 2011 (has links)
This dissertation addresses fault detection and isolation (FDI) for nonlinear systems based on models using two different approaches. The first approach detects and isolates single and multiple faults, particularly when there are restrictions in measuring process variables. The FDI model-based method is based on nonlinear state estimators, in which the estimates are calculated under high filtering, and a high fidelity residuals model, obtained from the difference between measurements and estimates. In the second approach, a robust fault detection and isolation (RFDI) system, that handles both parameter estimation and parameters with uncertainties, is proposed in which complex models can be simplified with nonlinear functions so that they can be formulated as differential algebraic equations (DAE). In utilizing this framework, faults are identified by performing a statistical analysis. Finally, comparisons with existing data-driven approaches show that the proposed model-based methods are capable of distinguishing a fault from the diverse array of possible faults, a common occurrence in complex processes. / text
|
Page generated in 0.0834 seconds