• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Robust Process Monitoring for Continuous Pharmaceutical Manufacturing

Mariana Moreno (5930069) 03 January 2019 (has links)
<p>Robust process monitoring in real-time is a challenge for Continuous Pharmaceutical Manufacturing. Sensors and models have been developed to help to make process monitoring more robust, but they still need to be integrated in real-time to produce reliable estimates of the true state of the process. Dealing with random and gross errors in the process measurements in a systematic way is a potential solution. In this work, we present such a systematic framework, which for a given sensor network and measurement uncertainties will predict the most likely state of the process. As a result, real-time process decisions, whether for process control, exceptional events management or process optimization can be based on the most reliable estimate of the process state.</p><p><br></p><p></p><p>Data reconciliation (DR) and gross error detection (GED) have been developed to accomplish robust process monitoring. DR and GED mitigate the effects of random measurement errors and non-random sensor malfunctions. This methodology has been used for decades in other industries (i.e., Oil and Gas), but it has yet to be applied to the Pharmaceutical Industry. Steady-state data reconciliation (SSDR) is the simplest forms of DR but offers the benefits of short computational times. However, it requires the sensor network to be redundant (i.e., the number of measurements has to be greater than the degrees of freedom).</p><p><br></p><p>In this dissertation, the SSDR framework is defined and implemented it in two different continuous tableting lines: direct compression and dry granulation. The results for two pilot plant scales via continuous direct compression tableting line are reported in this work. The two pilot plants had different equipment and sensor configurations. The results for the dry granulation continuous tableting line studies were also reported on a pilot-plant scale in an end-to-end operation. New measurements for the dry granulation continuous tableting line are also proposed in this work.</p><p><br></p><p></p><p>A comparison is made for the model-based DR approach (SSDR-M) and the purely data-driven approach (SSDR-D) based on the use of principal component constructions. If the process is linear or mildly nonlinear, SSDR-M and SSDR-D give comparable results for the variables estimation and GED. The reconciled measurement values generate using SSDR-M satisfy the model equations and can be used together with the model to estimate unmeasured variables. However, in the presence of nonlinearities, the SSDR-M and SSDR-D will differ. SSDR successfully estimates the real state of the process in the presence of gross errors, as long as steady-state is maintained and the redundancy requirement is met. Gross errors are also detected whether using SSDR-M or SSDR-D. </p><p><br></p>
2

Robustní monitorovací procedury pro závislá data / Robust Monitoring Procedures for Dependent Data

Chochola, Ondřej January 2013 (has links)
Title: Robust Monitoring Procedures for Dependent Data Author: Ondřej Chochola Department: Department of Probability and Mathematical Statistics Supervisor: Prof. RNDr. Marie Hušková, DrSc. Supervisor's e-mail address: huskova@karlin.mff.cuni.cz Abstract: In the thesis we focus on sequential monitoring procedures. We extend some known results towards more robust methods. The robustness of the procedures with respect to outliers and heavy-tailed observations is introduced via use of M-estimation instead of classical least squares estimation. Another extension is towards dependent and multivariate data. It is assumed that the observations are weakly dependent, more specifically they fulfil strong mixing condition. For several models, the appropriate test statistics are proposed and their asymptotic properties are studied both under the null hypothesis of no change as well as under the alternatives, in order to derive proper critical values and show consistency of the tests. We also introduce retrospective change-point procedures, that allow one to verify in a robust way the stability of the historical data, which is needed for the sequential monitoring. Finite sample properties of the tests need to be also examined. This is done in a simulation study and by application on some real data in the capital asset...

Page generated in 0.0996 seconds