• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

GEOTECHNICAL APPLICATIONS OF LIDAR FOR GEOMECHANICAL CHARACTERIZATION IN DRILL AND BLAST TUNNELS AND REPRESENTATIVE 3-DIMENSIONAL DISCONTINUUM MODELLING

Fekete, Stephanie 23 September 2010 (has links)
Contractors and tunnelling engineers consistently seek to identify techniques and equipment to improve the efficiency and lower the cost of tunnelling projects. Based on the recent successes of rock slope characterization with laser scanning techniques, the author proposes 3D laser scanning (LiDAR) as a new tool for geotechnical assessment in drill and blast tunnels. It has been demonstrated that practical deployment of a phase-based LiDAR system at the face of an active tunnel heading is possible with a simple tripod setup. With data collection requiring only 5 minutes at the tunnel face, it was shown that this technique could be integrated into geotechnical evaluation without interruption of the excavation cycle. Following the successful scanning at two active tunnelling projects and two completed unlined tunnels, the research explored the applications of the data. With detailed geometric data of the heading as it advanced, the author identified applications of interest to the contractor/on-site engineer as well as the geotechnical engineer or geologist responsible for rockmass characterization. Operational applications included the extraction of information about tunnel geometry and installed support, while geomechanical information provided important elements of rockmass characterization. Building on the success of retrieving joint network information, the research investigated the potential for LiDAR-derived structural databases to be the basis for highly-representative 3D discrete element models. These representative models were found to be useful for back-analysis or as predictive tools for future tunnel design. The primary implications of the thesis are that a) LiDAR data collection at the face of a drill and blast tunnel operation is practical and potentially has great value, b) data extraction is possible for a wide range of applications, and c) that discontinuum stability analysis becomes a much more powerful tool with the integration of LiDAR data. The cumulative result of the work presented is a proposed workflow for integrating LiDAR into tunneling operations. / Thesis (Master, Geological Sciences & Geological Engineering) -- Queen's University, 2010-09-22 19:38:49.401
2

Investigating Rock Mass Conditions and Implications for Tunnelling and Construction of the Amethyst Hydro Project, Harihari.

Savage, Erin January 2013 (has links)
The Amethyst hydro project was proposed on the West Coast of New Zealand as an answer to the increasing demand for power in the area. A previous hydro project in the area was deemed unviable to reopen so the current project was proposed. The scheme involves diverting water from the Amethyst Ravine down through penstocks in a 1040m tunnel and out to a powerhouse on the floodplain of the Wanganui River. The tunnel section of the scheme is the focus of this thesis. It has been excavated using drill and blast methods and is horseshoe shaped, with 3.5x3.5m dimensions. The tunnel was excavated into Haast Schist through its whole alignment, although the portal section was driven into debris flow material. The tunnel alignment and outflow portal is approximately 2km Southeast of the Alpine Fault, the right lateral thrusting surface expression of a tectonically complex and major plate boundary. The Amethyst Ravine at the intake portal is fault controlled, and this continuing regional tectonic regime has had an impact on the engineering strength of the rockmass through the orientation of defects. The rock is highly metamorphosed (gneissic in places) and is cut through with a number of large shears. Scanline mapping of the tunnel was completed along with re-logging of some core and data collection of all records kept during tunneling. Structural analysis was undertaken, along with looking at groundwater flow data over the length of the tunnel, in order to break the tunnel up into domains of similar rock characteristics and investigate the rockmass strength of the tunnel from first principles. A structural model, hydrological model and rockmass model were assembled, each showing the change in characteristics over the length of the tunnel. The data was then modeled using the 3DEC numerical modelling software. It was found that the shear zones form major structural controls on the rockmass, and schistosity changes drastically to either side of these zones. Schistosity in general steepens in dip up the tunnel and dip direction becomes increasingly parallel to the tunnel alignment. Water is linked to shear position, and a few major incursions of water (up to 205 l/s) can be linked to large (1.6m thick) shear zones. Modeling illustrated that the tunnel is most likely to deform through the invert, with movement also capable of occurring in the right rib above the springline and to a lesser extent in the left rib below the springline. This is due to the angle of schistosity and the interaction of joints, which act as cut off planes. The original support classes for tunnel construction were based on Barton’s Q-system, but due to complicated interactions between shears, foliations and joint sets, the designed support classes have been inadequate in places, leading to increased cost due to the use of supplementary support. Modeling has shown that the halos of bolts are insufficient due to the >1m spacing, which fails to support blocks which can be smaller than this in places due to the close spacing of the schistosity. It is recommended that a more broad support type be used in place of discreet solutions such as rock bolts, in order to most efficiently optimize the support classes and most effectively support the rock mass.
3

Numerical analysis of the interaction between rockbolts and rock mass for coal mine drifts in Vietnam

Le Van, Cong 05 August 2009 (has links) (PDF)
The thesis describes the application of anchors in mining and tunneling and gives an up-to-date overview about anchor types, design principles and the interaction mechanisms between anchors and rockmass. A constitutive model was developed, implemented and tested for the 2- and 3-dimensional numerical codes FLAC and FLAC3D to simulate non-linear anchor behaviour including unloading and reloading. The interaction between rockbolts and rockmass was studied in detail via numerical simulations for 5 Vietnamese coal mines. An extended version of the so-called c-Φ reduction method and a new introduced reinforcement factor were applied to quantify the effect of bolting. Mine specific and generalised relations were deduced to quantify the influence of anchor length and distance between anchors on the effect of bolting.
4

Numerical analysis of the interaction between rockbolts and rock mass for coal mine drifts in Vietnam

Le Van, Cong 19 December 2008 (has links)
The thesis describes the application of anchors in mining and tunneling and gives an up-to-date overview about anchor types, design principles and the interaction mechanisms between anchors and rockmass. A constitutive model was developed, implemented and tested for the 2- and 3-dimensional numerical codes FLAC and FLAC3D to simulate non-linear anchor behaviour including unloading and reloading. The interaction between rockbolts and rockmass was studied in detail via numerical simulations for 5 Vietnamese coal mines. An extended version of the so-called c-Φ reduction method and a new introduced reinforcement factor were applied to quantify the effect of bolting. Mine specific and generalised relations were deduced to quantify the influence of anchor length and distance between anchors on the effect of bolting.

Page generated in 0.0389 seconds