• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Heat Transfer to Rolling or Sliding Drops on Inclined Heated Superhydrophobic Surfaces

Furner, Joseph Merkley 21 July 2023 (has links) (PDF)
This thesis examines the time resolved heat transfer to drops rolling or sliding along inclined, subcritical heated non-wetting surfaces. Results were experimentally obtained using IR imaging for a smooth hydrophobic surface and post as well as rib structured superhydrophobic surfaces of varying solid fraction (f_s = 0.06 - 0.5). Tests were performed at varying inclination angle (α = 10, 15, 20, and 25°), drop volume (12, 20, 30, and 40 μL), and surface temperature (T_w = 50, 65, and 80 °C). Rib structured superhydrophobic surfaces were explored for drops moving parallel and perpendicular to the rib structures. The findings indicate that transient heat transfer is predominantly influenced by the surface’s solid fraction and the velocity of the drops, with a secondary dependence on drop volume. Surfaces with low solid fraction show a significant reduction in initial heating rate (up to 80% reduction) to the drop, when compared with that of the smooth surface. The drop velocity depends on surface solid fraction and inclination angle, with drop volume exerting smaller influence. Rib structured surfaces impact heat transfer by enhancing heat transfer rate for drops that move along the rib direction compared with drops that move perpendicular to the ribs. The difference is likely due to increased drop velocity that exists for the parallel rib orientation.
2

Liquid Interaction with Non-wettable Surfaces Structured with Macroscopic Ridges

Abolghasemibizaki, Mehran 01 January 2018 (has links)
Self-cleaning, anti-corrosion, anti-icing, dropwise-condensation, and drag-reduction are some applications in which superhydrophobic surfaces are implemented. To date, all the studies associated with superhydrophobic surfaces have been dedicated to understanding the liquid interaction with surfaces that are macroscopically smooth. The current study investigates the solid-liquid interaction of such surfaces which are fully decorated with macroscopic ridges (ribbed surfaces). In particular, the drop motion and impact on our newly designed non-wettable ribbed surface have been investigated in this work. Our experimental investigations have shown that liquid drops move faster on the ribbed surfaces due to lower friction induced by such a surface pattern. Moreover, an impacting droplet shows shorter contact time on ribbed surfaces. This concludes that ribbed surface pattern can be an efficient alternative design for the related applications. Besides the experimental studies, the theoretical analyses done in this work have led to, firstly a scaling model to predict descent velocity of a rolling viscous drops on an inclined non-wettable surface more accurately. Secondly, for curved superhydrophobic surfaces a scaling model which correlates the contact time of the impacting drop to its impact velocity has been developed. At the end, the knowledge obtained from this work has led to a special surface design which exhibits a contact time shorter than the inertial-capillary time scale, an unprecedented phenomenon.

Page generated in 0.1161 seconds