• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

ROOM CATEGORIZATION USING SIMULTANEOUS LOCALIZATION AND MAPPING AND CONVOLUTIONAL NEURAL NETWORK

Iman Yazdansepas (9001001) 23 June 2020 (has links)
Robotic industries are growing faster than in any other era with the demand and rise of in home robots or assisted robots. Such a robot should be able to navigate between different rooms in the house autonomously. For autonomous navigation, the robot needs to build a map of the surrounding unknown environment and localize itself within the map. For home robots, distinguishing between different rooms improves the functionality of the robot. In this research, Simultaneously Localization And Mapping (SLAM) utilizing a LiDAR sensor is used to construct the environment map. LiDAR is more accurate and not sensitive to light intensity compared to vision. The SLAM method used is Gmapping to create a map of the environment. Gmapping is one of the robust and user-friendly packages in the Robotic Operating System (ROS), which creates a more accurate map, and requires less computational power. The constructed map is then used for room categorization using Convolutional Neural Network (CNN). Since CNN is one of the powerful techniques to classify the rooms based on the generated 2D map images. To demonstrate the applicability of the approach, simulations and experiments are designed and performed on campus and an apartment environment. The results indicate the Gmapping provides an accurate map. Each room used in the experimental design, undergoes training by using the Convolutional Neural Network with a data set of different apartment maps, to classify the room that was mapped using Gmapping. The room categorization results are compared with other approaches in the literature using the same data set to indicate the performance. The classification results show the applicability of using CNN for room categorization for applications such as assisted robots.
2

AUTONOMOUS NAVIGATION AND ROOM CATEGORIZATION FOR AN ASSISTANT ROBOT

Doga Y Ozgulbas (10756674) 07 May 2021 (has links)
<div><div><div><p>Globally, there are more than 727 million people aged 65 years and older in the world, and the elderly population is expected to grow more than double in the next three decades. Families search for affordable and quality care for their senior loved ones will have an effect on the care-giving profession. A personal robot assistant could help with daily tasks such as carrying things for them and keeping track of their routines, relieving the burdens of human caregivers. Performing mentioned tasks usually requires the robot to autonomously navi- gate. An autonomous navigation robot should collect the knowledge of its surroundings by mapping the environment, find its position in the map and calculate trajectories by avoiding obstacles. Furthermore, to assign specific tasks which are in various locations, robot has to categorize the rooms in addition to memorizing the respective coordinates. In this research, methods have been developed to achieve autonomous navigation and room categorization of a mobile robot within indoor environments. A Simultaneously Localization and Map- ping (SLAM) algorithm has been used to build the map and localize the robot. Gmapping, a method of SLAM, was applied by utilizing an odometry and a 2D Light Detection and Ranging (LiDAR) sensor. The trajectory to achieve the goal position by an optimal path is provided by path planning algorithms, which is divided into two parts namely, global and local planners. Global path planning has been produced by DIJKSTRA and local path planning by Dynamic Window Approach (DWA). While exploring new environments with Gmapping and trajectory planning algorithms, rooms in the generated map were classified by a powerful deep learning algorithm called Convolutional Neural Network (CNN). Once the environment is explored, the robots localization in the 2D space is done by Adaptive Monte Carlo Localization (AMCL). To utilize and test the methods above, Gazebo software by The Robotic Operating System (ROS) was used and simulations were performed prior to real life experiments. After the trouble-shooting and feedback acquired from simulations, the robot was able to perform above tasks and later tested in various indoor environments. The environment was mapped successfully by Gmapping and the robot was located within the map by AMCL. Compared to the theoretical maximum efficient path, the robot was able to plan the trajectory with acceptable deviation. In addition, the room names were classified with minimum of 85% accuracy by CNN algorithm. Autonomous navigation results show that the robot can assist elderly people in their home environment by successfully exploring, categorizing and navigating between the rooms.</p></div></div></div>

Page generated in 0.1772 seconds