1 |
The use of small scale fire test data for the hazard assessment of bulk materialsFoley, Marianne January 1995 (has links)
An experimental study of fire testing of solid materials has been carried out to investigate whether or not these tests yield useful data for the burning of materials stored in bulk, for example in warehouses. Tests were performed using the Cone Calorimeter, the HSE third scale room/corridor rig, BS 5852 part 2, and some nonstandard tests. The results have been compared and the problems with fire testing have been discussed with reference to the current literature and trends in fire testing. The additional complications of unusual material behaviour under exposure to heating have also been investigated. In the third scale room/corridor test, where vertical, parallel samples are used, the separation distance between the samples was found to play a significant part in whether ignition of fire retarded samples could be achieved or not. A literature survey revealed a dearth of information on this subject. As this type of parallel configuration is found in warehouse storage as well as vertical ducts and cavities, an investigation was conducted into flames between vertical parallel walls. Measurements were made of total and radiative heat fluxes at the walls, flame and gas temperatures, and flame heights under a variety of conditions. It was found that the configuration of the system was very important, with the separation distance and fluid dynamics both having a major influence. Burner position, geometry and heat release rate were also varied and their influence assessed. Statistical methods were employed to correlate the heat flux data and temperatures with the other variables, with excellent correlation coefficients for the equations developed. These have been compared with previous expressions developed for flames against vertical walls. Results from CFD work on two of the parallel wall cases of special interest were analysed and discussed with reference to the . experimental results. The findings have implications for the fire testing of materials, and for the hazard assessment of materials stored in high rack storage. An understanding of potential exposure conditions in a real fire scenario are essential for the appropriate use of fire tests.
|
2 |
Transmission loss of vehicle sealsLi, Qi January 2008 (has links)
<p> Sound transmission loss of vehicle seals was studied in this thesis. Reverberation room test and semi-anechoic chamber test were respectively studied. By comparing the sound pressure level, sound intensity level and average sound power level at the receiving side, it proved that a simple sound pressure level test may obtain same measurement accuracy when there is little reflected sound. A semi-anechoic chamber was designed for testing sound transmission losses of the seals on a trial vehicle. By comparing the sound pressure levels between the location of the passenger ear and door area, it proved that most of outside sound energy passed through the door seals into the interior. The sound transmission losses of different sealing conditions were measured which included well sealed and imperfectly sealed conditions; Sound pressure levels at passenger’s ear in three different types of vehicles were also compared, these comparison results indicated this laboratory was capable of distinguishing different sealing conditions. The installation procedure was compared with the one in reverberation room test. Numerical analysis showed that the latter method produced a different compression shape which would definitely influence the sound insulation abilities of the seals.</p><p> The transmission mechanism of the acoustic waves through a vehicle seal was also discussed. Contact analysis showed high compression ratio leaded to tremendous inner stress intensity. But any further increase of the contact depth would not improve the effect of wind noise prevention. A vehicle seal with a complex shape was replaced by a simple model. The sound transmission theory of multiple partitions on the basis of mass law was applied. Whereas, compared with the experimental result, a different trend in the high frequency range was found. When taking the transmission though the side material and integration of incident angle into account, the result was quite similar to the experimental one. FEM analysis was also performed. The majority of sound power was believed to transmit along the seal wall into the interior instead of passing through the multiple partitions. A distorted circular duct model is believed to be close to the real geometry.</p><p> </p>
|
3 |
Transmission loss of vehicle sealsLi, Qi January 2008 (has links)
Sound transmission loss of vehicle seals was studied in this thesis. Reverberation room test and semi-anechoic chamber test were respectively studied. By comparing the sound pressure level, sound intensity level and average sound power level at the receiving side, it proved that a simple sound pressure level test may obtain same measurement accuracy when there is little reflected sound. A semi-anechoic chamber was designed for testing sound transmission losses of the seals on a trial vehicle. By comparing the sound pressure levels between the location of the passenger ear and door area, it proved that most of outside sound energy passed through the door seals into the interior. The sound transmission losses of different sealing conditions were measured which included well sealed and imperfectly sealed conditions; Sound pressure levels at passenger’s ear in three different types of vehicles were also compared, these comparison results indicated this laboratory was capable of distinguishing different sealing conditions. The installation procedure was compared with the one in reverberation room test. Numerical analysis showed that the latter method produced a different compression shape which would definitely influence the sound insulation abilities of the seals. The transmission mechanism of the acoustic waves through a vehicle seal was also discussed. Contact analysis showed high compression ratio leaded to tremendous inner stress intensity. But any further increase of the contact depth would not improve the effect of wind noise prevention. A vehicle seal with a complex shape was replaced by a simple model. The sound transmission theory of multiple partitions on the basis of mass law was applied. Whereas, compared with the experimental result, a different trend in the high frequency range was found. When taking the transmission though the side material and integration of incident angle into account, the result was quite similar to the experimental one. FEM analysis was also performed. The majority of sound power was believed to transmit along the seal wall into the interior instead of passing through the multiple partitions. A distorted circular duct model is believed to be close to the real geometry. / QC 20101117
|
Page generated in 0.0621 seconds