• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1091
  • 1044
  • 140
  • 118
  • 50
  • 42
  • 35
  • 34
  • 33
  • 20
  • 18
  • 18
  • 18
  • 18
  • 18
  • Tagged with
  • 2995
  • 657
  • 525
  • 270
  • 235
  • 200
  • 199
  • 195
  • 188
  • 184
  • 174
  • 166
  • 154
  • 147
  • 143
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

The effect of roots on the shearing strength of soil

Erb, Ronald T. January 1985 (has links)
No description available.
152

Factors affecting root system response to nutrient heterogeneity in forested wetland ecosystems

Neatrour, Matthew Aaron 03 May 2005 (has links)
Soil nutrients are often heterogeneously distributed in space and time at scales relevant to individual plants, and plants can respond by selectively proliferating their roots within nutrient-rich patches. However, many environmental factors may increase or decrease the degree of root proliferation by plants. I explored how soil fertility, nitrogen (N) or phosphorus (P) limitation, and soil oxygen availability affected root system response to nutrient heterogeneity in forested wetland ecosystems of southeastern United States. Fine root biomass was not correlated with soil nutrient availability within wetland ecosystems, but was related to ecosystem-scale fertility. Root systems generally did not respond to P-rich patches in both floodplain (nutrient-rich) and depressional swamps (nutrient-poor) swamps, but results were inconclusive because the growth medium (sand) potentially hindered root growth. In floodplain forests, roots proliferated into N-rich patches but not P-rich patches, even though litterfall N:P ratios were > 15, which suggested that these ecosystems were P-limited. The combination of nutrient and oxygen heterogeneity affected root proliferation and biomass growth of three common floodplain forest species (Liquidambar styraciflua, Fraxinus pennsylvanica, and Nyssa aquatica) in a potted study, which was related to species' flood tolerance. My results suggest that the environmental context of plants can affect roots system response to nutrient heterogeneity in forested wetland ecosystems and highlights the need for field studies that investigate this phenomenon. Learning how environmental conditions affect plant response to nutrient heterogeneity at a fine-scale will provide better predictions of nutrient cycling, plant competition and succession, and forest productivity, which are important factors that determine carbon sequestration and timber production. / Ph. D.
153

Trophic dynamics in the fine-root based food web: integrating resource heterogeneity, root herbivores, and root foraging

Stevens, Glen N. 20 July 2005 (has links)
Resources in the soil are heterogeneously distributed. We know that plant species differ in their root responses to nutrient patches and that these differences in foraging can influence plant competition. However, most studies of root-resource interactions overlook the potential top-down influence of root herbivores. While root herbivores can influence plant community structure, the extent to which they influence ecosystem-scale factors such as net primary production is unclear. In addition, little is known regarding root herbivore foraging behaviors and, more importantly, whether these foraging behaviors can actually influence species interactions. In this dissertation, I present a conceptual model of soil-root-herbivore interactions in which soil resource heterogeneity structures both root dynamics and the abundance and influence of root herbivores. I conducted two field and one greenhouse experiment examining this proposed model. The dissertation includes an introductory chapter (Chapter 1), a field study examining root responses to manipulations of soil fertility and root herbivory (Chapter 2), a greenhouse study that used plant species responses to heterogeneity to develop predictions about the role of root herbivores in mixed-species neighborhoods (Chapter 3), and a field study of planted communities examining soil fertility and fauna effects on above- and belowground structure and function (Chapter 4). In all cases, there were significant effects of root herbivores on community structure and components of net primary production. Resource distribution had a strong effect in studies conducted in sandy, nutrient-poor soils (Chapter 2 and 3), but had a reduced effect in the study conducted at Kentland Farm in loamy soils (Chapter 4). Interactions between resource availability and root herbivory were common. These results support the theory that the potential benefit of resource-rich patches may be constrained by root herbivores. This research complements recent findings that demonstrate other potential costs of species foraging behaviors (such as exposure to soil anoxia and increased drought stress), as well as potential effects of root herbivores and other soil fauna on plant diversity. / Ph. D.
154

Ozone effects on red oak root dynamics

Kelting, Daniel L. 13 February 2009 (has links)
Many research projects concerning the possible deleterious effects of ozone on forest health have been conducted on individual tree species. The common goal of these projects has been to identify mechanisms of damage by ozone, and then extrapolate research results to forests. Results from seedling studies are used to parameterize process-based tree growth models which are used to project mature tree responses to different levels of ozone. This approach has been criticized because nothing is known about differences in seedling and mature-tree responses to ozone. Another problem is that few projects have examined the effects of ozone on below ground processes; therefore, very little data exists for parameterizing the models. In order to address the problem of scaling seedling results to mature trees, and increase our level of understanding of ozone effects on below ground processes, an ozone fumigation experiment on northern red oak seedlings and mature trees was conducted. It was hypothesized that carbon reallocation to replace foliage damaged by ozone would decrease fine-root production and turnover. The red oak trees and seedlings were fumigated for three years with three levels of ozone (subambient, ambient, and 2X ambient) in open-top chambers. After two seasons of exposure, 2X ozone (0.082 ppm 7hr-mean conc.) reduced mature- tree cumulative net fine-root production and turnover by 31 and 41 %, respectively, relative to ambient ozone (0.042 ppm 7hr-mean conc.). For the same time period, ozone had no effect on seedling cumulative fine-root turnover; fine-root production was 25% higher under ambient ozone relative to subambient and 2X ambient ozone. During the summer, 1994, mature tree BUE was reduced by 2X ozone. Decreased fine-root production, turnover, and BUE under 2X ozone for the mature trees indicates that ozone can alter the dynamics of belowground carbon allocation in mature red oak. Since the seedlings were not sensitive to ozone, use of seedling results for modelling purposes may underestimate mature tree responses to ozone. / Master of Science
155

Molecular and Functional Characterization of Terpene Chemical Defense in Arabidopsis Roots in Interaction with the Herbivore Bradysia spp. (fungus gnat)

Vaughan, Martha Marie 18 June 2010 (has links)
Roots and leaves are integrated structural elements that together sustain plant growth and development. Insect herbivores pose a constant threat to both above- and belowground plant tissues. To ward off herbivorous insects, plants have developed different strategies such as direct and indirect chemical defense mechanisms. Research has primarily focused on visible aboveground interactions between plants and herbivores. Root-feeding insects, although often overlooked, play a major role in inducing physical and physiological changes in plants. However, little is known about how plants deploy chemical defense against root herbivores. We have developed an Arabidopsis aeroponic culture system based on clay granulate, which provides access to root tissue and accommodates subterranean insect herbivores. Using this system, feeding performance and plant tissue damage by the root herbivore Bradysia (fungus gnat) were evaluated. Larval feeding was found to reduce Arabidopsis root biomass and water uptake. Furthermore, we have characterized a root-specific terpene synthase AtTPS08, which is responsible for the constitutive formation of the novel volatile diterpene compound, rhizathalene, in Arabidopsis roots. Rhizathalene synthase is a class I diterpene synthase that has high affinity for the substrate geranylgeranyl diphosphate (GGPP) and is targeted to the root leucoplast. Expression of the β-glucuronidase (GUS) reporter gene fused to the upstream genomic region of AtTPS08 demonstrated constitutive promoter activity in the root vascular tissue and root tips. Using the established bioassay with Arabidopsis and Bradysia larvae, in aeroponic culture we could show that roots deficient in rhizathalene synthesis were more susceptible to herbivory. Our work provides in vivo-evidence that diterpene compounds are involved in belowground direct defense against root-feeding insects. Future work is still required to improve our understanding of plant root defense. This study has provided a basis for future investigations on the biochemistry, molecular regulation and defensive function of Arabidopsis root chemicals in interaction with both above- and belowground herbivores (and pathogens). / Ph. D.
156

Invasion of senescing cereal and grass root tissues by parasitic fungi

Gillespie, Iain January 1986 (has links)
No description available.
157

The use of a root bioassay to indicate the phosphorus status of forest trees

McDonald, Morag Anne January 1987 (has links)
No description available.
158

Role of mycorrhizas in drought resistance of Sitka spruce seedlings

Lehto, Tarja Helena January 1989 (has links)
No description available.
159

Factors affecting the length of survival of permanent teeth after first-time non-surgical root canal treatment

Tan, Siow Wah, 陳曉華 January 2003 (has links)
published_or_final_version / Dentistry / Master / Master of Dental Surgery
160

An in vitro comparison of three instrumentation techniques in curved root canals

陳維國, Chan, Wai-kwok, Alex. January 1993 (has links)
published_or_final_version / Dentistry / Master / Master of Dental Surgery

Page generated in 0.0506 seconds