• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Taxonomic and ecological studies on the root endophytic hyaloscyphaceous fungi associated with Fagaceae trees in Japanese secondary forests / 我が国の二次林のブナ科樹木根部に定着するヒアロスキファ科内生菌に関する分類学的・生態学的研究

Nakamura, Noritaka 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第21149号 / 農博第2275号 / 新制||農||1059(附属図書館) / 学位論文||H30||N5123(農学部図書室) / 京都大学大学院農学研究科地域環境科学専攻 / (主査)教授 田中 千尋, 教授 本田 与一, 准教授 刑部 正博 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DGAM
2

The relationship between plants and their root-associated microbial communities in hydrocarbon phytoremediation systems

Phillips, Lori (Lori Ann) 30 October 2008
Phytoremediation systems for petroleum hydrocarbons rely on a synergistic relationship between plants and their root-associated microbial communities. Plants exude organic compounds through their roots, which increase the density, diversity and activity of plant-associated microorganisms, which in turn degrade hydrocarbons. Understanding the mechanisms driving this relationship poses one of the more intriguing challenges in phytoremediation research. This study was designed to address that challenge. Plant-microbe interactions in a weathered-hydrocarbon contaminated soil were examined under controlled growth chamber, and field conditions. In both environments single-species grass treatments initially facilitated greater total petroleum hydrocarbon (TPH) degradation than <i> Medicago sativa </i> (alfalfa), mixed species, or control treatments. In growth chamber studies increased degradation was linked to increased aliphatic-hydrocarbon degrader populations within the rhizosphere. Under field conditions, specific recruitment of endophytic aliphatic-hydrocarbon degraders in response to high TPH levels may have facilitated increased degradation by the grass <i> Elymus angustus</i>(Altai wild rye, AWR). AWR stably maintained these communities during times of local drought, enabling them to act as subsequent source populations for rhizosphere communities. The broad phylogenetic diversity of AWR endophytes, compared to the <i> Pseudomonas</i>-dominated communities of other plants, contributed to the observed stability. The relative composition of exudates released by plants also impacted both degradation activity and potential. Alfalfa released higher concentrations of malonate, which hindered degradation by decreasing metabolic activity and concomitantly inhibiting catabolic plasmid transfer. In contrast, AWR exudates contained high levels of succinate, which was linked to increased catabolic gene expression and plasmid transfer. A reciprocal relationship between exudation patterns and endophytic community structure likely exists, and both parameters have a specific influence on rhizosphere degradation capacity. In this study, grasses were more successful in maintaining the specific balance of all parameters required for the transfer, preservation, and stimulation of hydrocarbon catabolic competency.
3

The relationship between plants and their root-associated microbial communities in hydrocarbon phytoremediation systems

Phillips, Lori (Lori Ann) 30 October 2008 (has links)
Phytoremediation systems for petroleum hydrocarbons rely on a synergistic relationship between plants and their root-associated microbial communities. Plants exude organic compounds through their roots, which increase the density, diversity and activity of plant-associated microorganisms, which in turn degrade hydrocarbons. Understanding the mechanisms driving this relationship poses one of the more intriguing challenges in phytoremediation research. This study was designed to address that challenge. Plant-microbe interactions in a weathered-hydrocarbon contaminated soil were examined under controlled growth chamber, and field conditions. In both environments single-species grass treatments initially facilitated greater total petroleum hydrocarbon (TPH) degradation than <i> Medicago sativa </i> (alfalfa), mixed species, or control treatments. In growth chamber studies increased degradation was linked to increased aliphatic-hydrocarbon degrader populations within the rhizosphere. Under field conditions, specific recruitment of endophytic aliphatic-hydrocarbon degraders in response to high TPH levels may have facilitated increased degradation by the grass <i> Elymus angustus</i>(Altai wild rye, AWR). AWR stably maintained these communities during times of local drought, enabling them to act as subsequent source populations for rhizosphere communities. The broad phylogenetic diversity of AWR endophytes, compared to the <i> Pseudomonas</i>-dominated communities of other plants, contributed to the observed stability. The relative composition of exudates released by plants also impacted both degradation activity and potential. Alfalfa released higher concentrations of malonate, which hindered degradation by decreasing metabolic activity and concomitantly inhibiting catabolic plasmid transfer. In contrast, AWR exudates contained high levels of succinate, which was linked to increased catabolic gene expression and plasmid transfer. A reciprocal relationship between exudation patterns and endophytic community structure likely exists, and both parameters have a specific influence on rhizosphere degradation capacity. In this study, grasses were more successful in maintaining the specific balance of all parameters required for the transfer, preservation, and stimulation of hydrocarbon catabolic competency.
4

Role DSE (Dark Septate Endophytes) v rostlinném společenstvu lesního ekosystému / The role of DSE (Dark Septate Endophytes) in plant communities in forest ecosystem

Lukešová, Tereza January 2013 (has links)
10 Abstract All plants live in symbiosis with fungal endophytes - they can form mutualistic, commensal or parasitic symbioses. Symbiosis of root endophytes, called for their darkly pigmented and septated hyphae dark septate endophytes (DSE), and plants has been often overlooked although its role for plant communities can be very important. Despite their ubiquitous presence in roots of terrestrial and also aquatic plants the influence of DSE on their host plants is still unresolved. Results of previous studies are inconsistent - some reported that DSE have positive effects on their host plant growth and some negative. The main reason for this inconsistency might be their complicated taxonomy and difficult identification of different cryptic species which are morphologically indistinguishable. We were able to complete a unique collection of the most common DSE species, mainly members of the Phialocephala fortinii - Acephala applanata species complex. The collection includes the most common DSE species isolated from roots of forest plant communities. The goal of my thesis was to describe behaviour of DSE in roots of typical forest plants and elucidate their physiological influence on host plants. In vitro resynthesis experiments were used to observe root colonization patterns. Nutrient flow between the plant...

Page generated in 0.0978 seconds