1 |
On completeness of root functions of Sturm-Liouville problems with discontinuous boundary operatorsShlapunov, Alexander, Tarkhanov, Nikolai January 2012 (has links)
We consider a Sturm-Liouville boundary value problem in a bounded domain D of
R^n. By this is meant that the differential equation is given by a second order
elliptic operator of divergent form in D and the boundary conditions are of Robin type on bD. The first order term of the boundary operator is the oblique derivative whose coefficients bear discontinuities of the first kind. Applying the method of weak perturbation of compact self-adjoint operators and the method of rays of minimal growth, we prove the completeness of root functions related to the boundary value problem in Lebesgue and Sobolev spaces of various types.
|
2 |
Sturm-Liouville problems in domains with non-smooth edgesShlapunov, Alexander, Tarkhanov, Nikolai January 2013 (has links)
We consider a (generally, non-coercive) mixed boundary value problem in a bounded domain for a second order elliptic differential operator A. The differential operator is assumed to be of divergent form and the boundary operator B is of Robin type. The boundary is assumed to be a Lipschitz surface.
Besides, we distinguish a closed subset of the boundary and control the growth of solutions near this set. We prove that the pair (A,B) induces a Fredholm operator L in suitable weighted spaces of Sobolev type, the weight function being a power of the distance to the singular set. Moreover, we prove the completeness of root functions related to L.
|
Page generated in 0.1032 seconds