• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

PLANT HORMONE PATHWAYS PLAY A CRUCIAL ROLE IN SOLANUM SPP. INTERACTIONS WITH THE SOIL ENVIRONMENT

Elizabeth A. French (5929676) 17 January 2019 (has links)
Plants regulate responses to their environment through complex hormone signaling; these hormones can be categorized broadly into two categories: growth and defense, though many have roles in both. Much remains to be understood about the complexity of hormone signaling in relation to environmental responses, especially species- and genotype-specific differences. Unraveling this complexity of hormone signaling will lead to the development of resilient crops that are able to respond appropriately to their environment. In this dissertation, I hypothesize novel roles for growth and defense hormones in <i>Solanum </i>spp. responses to 1) biochar, a black carbon soil amendment (Chapter 2), 2) infection with<i> Ralstonia solanacearum</i>, an economically important soilborne pathogen causing bacterial wilt (Chapter 3), and 3) endophytic colonization by the soil bacterial community (Chapter 4). In Chapter 2, I showed that biochar upregulates GA signaling and affects GA-related traits in a species- and cultivar-specific manner. Biochar amendment also downregulates defense signaling. In Chapter 3, I demonstrated a novel role for auxin in resistance against <i>R. solanacearum, </i>including differential expression of auxin signaling genes in resistant genotype H7996 compared to susceptible WV in response to <i>R. solanacearum</i> infection. In addition, I observed stronger and faster upregulation of defense hormone marker genes for SA and ET in H7996 compared to WV. In Chapter 4, I showed that SA and ET are required for normal tomato root microbial community assembly, affecting the colonization of a few key taxa in order to promote alpha diversity. H7996 and WV root communities differ in alpha diversity, and a panel of H7996 x WV RILs showed quantitative variation in alpha diversity that correlated negatively with the abundance of these key taxa. In conclusion, I elucidated novel roles for hormones in responses to the soil environment, pathogen infection, and root community colonization. These findings are important for developing resilient, sustainable crops.

Page generated in 0.0859 seconds