• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 116
  • 33
  • 14
  • 12
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • 2
  • 1
  • Tagged with
  • 230
  • 230
  • 52
  • 50
  • 27
  • 26
  • 19
  • 18
  • 16
  • 14
  • 13
  • 11
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Soil mechanical properties and the behaviour of roots in structured soil : published works / by Anthony Roger Dexter

Dexter, Anthony Roger January 1988 (has links)
Comprised of the author's previously published works / Includes bibliographical references / 1 v. (various pagings) : / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (D. Sc.)--University of Adelaide, Dept. of Soil Science, Waite Agricultural Research Institute, 1988?
182

Effects of partial rootzone drying on grapevine physiology and fruit quality.

Stoll, Manfred January 2000 (has links)
Growth, productivity and fruit quality of grapevines are closely linked to soil water availability. Withholding of water for any length of time results in slowed growth. If drought continues yield may be lost. Vines can be manipulated to stimulate early defence mechanisms by decreasing soil water availability. By using an irrigation technique, which allows for separate zones with different soil moisture status, it is possible to stimulate response mechanisms of the root system which are normally related to water stress. The difficulty of separating 'wet' and 'dry' zones was initially overcome by using split-root plants with root systems divided between two containers. Such experiments on split-root model plants resulted in the development of an irrigation technique termed partial rootzone drying (PRD). Results from irrigation experiments using PRD have shown that changes in stomatal conductance and shoot growth are some of the major components affected (Dry et al., 1996). The idea of using irrigation as a tool to manipulate stress responses in this way had its origin in the concept that root- derived abscisic acid (ABA) was important in determining stomatal conductance (Loveys, 1984). Later experiments on split-root plants have demonstrated that many effects of water stress can be explained in terms of transport of chemical signals from roots to shoots without changes in plant water status (Gowing et al., 1990). The necessary chemical signals are provided by the dry roots, and the wet roots prevent the development of deleterious water deficits. The general hypothesis tested during this study was that partial drying of the root system gives rise to a change in the supply of root-derived chemical signals which determine changes in grapevine physiology, thereby affecting fruit quality. Experiments were conducted on split-root vines (Vitis vinifera L. cvs. Cabernet Sauvignon and Chardonnay) grown in pots of different sizes, on field-grown vines which had either their root system divided by a plastic membrane (Vitis vinifera L. cv. Cabernet Sauvignon on own roots or grafted on Ramsey rootstocks) or conventional vines with a non-divided root system (Vitis vinifera L. cv. Cabernet Sauvignon, Shiraz and Riesling) with a commercial PRD irrigation design. The irrigation treatments were vines receiving water on both sides (control) and PRD-treated vines, which only received water on one side at any time. The frequency of alternation of 'wet' and 'dry' sides was determined according to soil moisture and other influences such as rainfall and temperature. In most of the experiments the irrigation was alternated from one side to the other every 10 to 15 days. Chemical signals from roots: the role of ABA and cytokinins Studies on chemical signals have concentrated on ABA and cytokinins (CK). An improved stable isotope dilution protocol, which enables analysis of ABA and CK from the same tissue sample, was developed. Analysis of cytokinins focused on zeatin (Z), zeatin riboside (ZR), zeatin glucoside (ZG) and iso pentenyl adenine (iP). Roots are relatively inaccessible, particularly in field situations. To enable easier access to roots of field-grown vines, split-root vines were planted in a trench which was refilled with a sandy soil. This created a homogenous soil substrate and did not restrict root growth while still allowing access to roots under field conditions. Analyses of root samples of field-grown vines have shown that cytokinins and ABA may originate in roots and their concentrations can be substantially altered during an irrigation cycle. Alternating soil water conditions showed that [ABA] in roots on the 'dry' side was significantly higher compared with the 'wet' side. Due to a reduction in CK on the 'dry' side of PRD-treated vines, the ratio between ABA and CK was substantially changed during an irrigation cycle. The ABA levels in root tissue and in petiole xylem sap were negatively related to stomatal conductance. This further suggests that ABA, mostly synthesized on the 'dry' side of the root system, might be responsible for a decline in stomatal conductance. Furthermore, a higher pH of petiole xylem sap was observed in PRD-treated vines which may also contribute to the regulation of stomatal conductance. Studies on stomatal patchiness showed that non-uniform stomatal aperture occurred in field-grown vines under natural environmental conditions and was more abundant under PRD conditions. The degree of stomatal opening, determined by using a water infiltration technique, correlated with measurement of stomatal conductance. Exogenous application of a synthetic cytokinin (benzyl adenine) can override the possible ABA-mediated stomatal closure resulting from PRD treatment, providing further evidence for the in vivo role of these growth regulators in the control of stomatal conductance. The effect of benzyl adenine was transient, however, requiring repeated applications to sustain the reversal. In addition, CKs may also be important in influencing grapevine growth. Following several weeks of repeated spray applications with benzyl adenine, it was found that the development of lateral shoots in PRD-treated vines was enhanced compared to PRD-treated vines sprayed with water only. This supports the idea that the reduction in lateral shoot development seen in PRD-treated vines is due to a reduced production of CKs (Dry et al., 2000a). By measuring shoot growth rate it was found that one common feature of PRD-treated vines, which were not sprayed with CK, was a reduction of lateral shoot growth. It can therefore be speculated that the reduction in lateral growth is related to a reduced delivery of cytokinins from the roots. Zeatin and zeatin riboside concentration in shoot tips and prompt buds/young lateral shoots were reduced by the PRD treatment providing further evidence in support of this hypothesis. Water movement from 'wet' to 'dry' roots Roots, being a primary sensor of soil drying, play an important role in long- and short-term responses to PRD. Using stable isotopes of water and heat-pulse sap flow sensors water movement was traced from wet to dry roots in response to PRD. The redistribution of water from roots grown in a soil of high water potential to roots growing in a soil of low water potential may be of significance with regard to the movement of chemical signals and the control of water balance of roots. Measurements of the relative water content (RWC) have shown a slower decline of RWC of the 'dry' roots of PRD vines relative to roots of vines which received no water, despite similar water content in soil surrounding those roots. The redistribution of water may help to sustain the response to PRD for longer periods possibly releasing chemical signals and to support the activity of fine roots in drying soil. Field vines, irrigated with PRD over several growing seasons, altered their root distribution relative to the control vines. PRD caused a greater concentration of fine roots to grow in deeper soil layers and this may contribute to a better water stress avoidance. The effect on root growth may be augmented by the water movement and by the large difference in ABA to cytokinin ratio, which are also known to alter root growth. PRD makes more efficient use of available water In experiments where both control and PRD-treated vines received the same amount of water many differences between the vines were demonstrated. Under conditions where water supply was adequate for both treatments, the stomatal conductance and growth of the PRD-treated vines was restricted as has been observed in many previous experiments. As total water input was reduced, however, the stomatal conductance of PRD-treated vines became greater than control vines, suggesting that the latter were experiencing a degree of water stress, whereas the PRD-treated vines were not. This may have been due to the greater depth of water penetration in the case of the PRD-treated vines, where water was applied to a smaller soil surface area. This distinction between PRD-treated and control vines, at very low water application rates, was also reflected in pruning weights and crop yields which were actually greater in PRD-treated vines. It was concluded that at low water application rates, the PRD-treated vines were more tolerant of water stress and made more efficient use of available water. Reduction in vigor opens the canopy. The initial aim of the research which led to the development of PRD was to achieve better control of undesirable, excessive shoot and foliage growth which, from a viticultural point of view, has many disadvantages. Grapevine shoot growth rate responds very sensitively to drying soil conditions. The irrigation strategy used in the PRD experiments maintained a reduction of both main shoot and lateral shoot growth. In response to PRD a decrease in shoot growth rate and leaf area was observed. Much of the reduction in canopy biomass was due to a reduced leaf area associated with lateral shoots, thus influencing the canopy structure. This was one major factor improving the light penetration inside the canopy. Control of vegetative vigour results in a better exposure of the bunch zone to light and, as a consequence, in improved grape quality. It is likely that changes in canopy density, as a result of PRD, is causing changes in fruit quality components. Anthocyanin pigments such as derivatives of delphinidin, cyanidin, petunidin and peonidin were more abundant in berries from PRD vines; by comparison the concentration of the major anthocyanin, malvidin, was reduced. When leaves were deliberately removed from more vigorous control vines, which improved bunch exposure, the differences in fruit composition were much reduced. This further supports the idea that a more open canopy, in response to PRD, improves fruit quality by affecting the canopy structure. Fruit quality consequently determines the quality, style and value of the finished wine. Wines from this study have been produced and data on wine quality from commercial wineries are also available. Sensory evaluations have demonstrated that high wine quality from PRD-treated vineyards can be achieved without any yield-depressing effects. This study has provided evidence to support the original hypothesis. The major findings were: a) Chemical signals, altered under PRD and mostly originating from roots, play an important role in the root to shoot communication in grapevines. b) The movement of water from 'wet' to 'dry' soil layers may help to sustain chemical signals as a response of grapevines to PRD and to support the activity of fine roots in drying soil. c) A reduction in vegetative growth, in particular of lateral shoots, was sustained using PRD and affected the canopy structure which in turn, due to a better light penetration into the canopy, improved the fruit quality. d) The reduction in irrigation water applied did not have a detrimental effect on grape yield and thus the efficiency of water use was improved. e) Application of relatively low irrigation rates showed that PRD-treated vines were more tolerant of water stress and made more efficient use of available water. / Thesis (Ph.D.)--Department of Horticulture, Viticulture and Oenology, 2000.
183

Variation of drought resistance and root regeneration among genotypes of Port-Orford-cedar (Chamaecyparis lawsoniana)

Sharpe, Jodie M. 18 October 2002 (has links)
Drought resistance among genotypes of Port-Orford-cedar (Chamaecyparis lawsoniana (A. Murr.) Pan., Cupressaceae) seedlings was evaluated both in the field and in the greenhouse. Field water potentials (��) of 5-year-old seedlings were measured at two high-elevation plantation sites where summer drought occurs. Measurements of �� were compared to survival two years prior at the same site. The north coastal breeding zone 1 had significantly lower mid-day �� and lower survival than the southern interior breeding zone 6. Percent survival at 3 years was significantly correlated with mid-day ��. A second assessment of drought resistance was performed in the greenhouse on 1-0 seedlings. Root growth potential (RGP) was measured in the winter under non-stress conditions and following a drought in the summer. Differences among breeding zones were opposite in pattern from outplanting measurements of survival and water potential; therefore, RGP may not be a good predictor of drought resistance or survival among different genotypes within a single species. Low-elevation, coastal families had greater root growth than inland, high elevation sources. Greater root growth occurred in seedlings with more shoot mass. Little regional specialization in RGP across the species' range was indicated as there was greater variation among families than among breeding zones. In the summer RGP test following drought, only the two extremes of the range were evaluated; both north coastal and southern interior families showed decreased root growth compared to the winter RGP under non-stress conditions. Despite significantly higher predawn �� in inland, high elevation families, lower elevation coastal families had significantly more roots. Change in chlorophyll fluorescence yield measured on foliage of droughted plants was positively correlated with the absolute value of predawn ��; however, it was not a sensitive predictor of predawn �� (R��=0.06) at the levels used in this study. Lower levels of �� may be necessary to produce severe stress to damage Port-Orford-cedar foliage. / Graduation date: 2003
184

Identification, isolation, expression analysis and molecular characterization of nine genes key to late embryogenesis in Loblolly pine

Jones, Brande 22 January 2011 (has links)
A basic understanding of the molecular events occurring during zygotic embryogenesis is required to fully understand how and why only a very small percentage of somatic embryos develop past the late embryogeny phase of embryogenesis. In this work, we have identified genes that have been demonstrated to be required for late embryonic development in the model plant system Arabidopsis thaliana. These genes were subsequently isolated and cloned from Loblolly pine embryos. These isolated clones were sequenced and analyzed to reveal significant homology to the known Arabidopsis ABA responsive genes ABI3, ABI4, and ABI5. Expression analyses of all three genes were completed, and compared to reported data of ABA accumulation, as well as, expression of other ABA responsive genes during the same stages of embryogenesis. Six putative root development genes were isolated and cloned from Loblolly pine embryos. These isolated clones were sequenced and analyzed to reveal significant homology to the known Arabidopsis root development genes WOODENLEG, SHORT ROOT, SCARECROW, HOBBIT, BODENLOS, and MONOPTEROS. Full-length cDNAs were isolated and cloned for WOODENLEG, SHORT ROOT, SCARECROW and BODENLOS. Expression analyses of all six genes were completed throughout mid to late embryogenesis in Loblolly pine.
185

Grapevine rhizosphere bacteria : influence of diversity and function on two root diseases : a thesis submitted in fulfilment of the requirements for the degree of Master of Science at Lincoln University /

Dore, Dalin Shelley. January 2009 (has links)
Thesis (M. Sc.) -- Lincoln University, 2009. / Also available via the World Wide Web.
186

The effect of 6-Benzyladenine on adventitious shoot formation by Lycopersicon. species in vitro.

De Villiers, Roelof Pieter. January 1994 (has links)
Lycopersicon esculentum Mill. cv. Rodade was developed in South Africa for the fresh produce market. This cultivar is also of major importance for South African tomato breeding programmes because of its resistance to bacterial wilt. In this study, aspects of the effects of 6-benzyladenine on adventitious shoot formation by both L. esculentum cv. Rodade and Lycopersicon peruvianum Mill. were studied in vitro. These included the regeneration of adventitious shoots, the effects of different incubation times, the uptake and metabolism of BA and the effect of auxin on the metabolism of BA in both leaf and callus tissue of the two species. Adventitious buds could be regenerated on all tissue types except for callus tissue of L. esculentum. A stepwise increase in the percentage shoots produced was observed indicating a period of induction wherein incubation on a medium containing BA is beneficial to the production of shoots. Leaf tissue was more responsive to BA treatments than callus tissue of both species. The main route of BA metabolism in both species is from BA to [9R]BA and [9R-MP]BA. Callus tissue of L. esculentum cv. Rodade however converted BA to the 3- and 9- glucosides of BA rather than to metabolically active forms of the cytokinin. The auxin, indole-3-acetic acid, played a definite role in the conversion of BA to [3G]BA and [9G]BA in leaf tissue of the tomato cultivar tested, but had no effect in callus tissue of this species. / Thesis (Ph.D.)-University of Natal, Pietermaritzburg, 1993.
187

Recirculating hydroponic systems : evaluating cuttings yield and rooting ability of cold tolerant eucalyptus hybrids.

Wallis, Jacqueline Tanya. January 2004 (has links)
In South Africa, clonal forestry of Eucalyptus and its hybrids has been implemented to increase the productivity on existing forestry lands and marginal sites and to facilitate the production of desired fibre types for timber processing operations. The cold-tolerant Eucalyptus grandis x E. nitens hybrids have produced consistently high yields, and are propagated clonally with limited success via a macro-cutting system currently in use for other hybrid species. The heart of vegetative propagation operations is the clonal hedge and its management, and nutrition in particular, is an important element of any vegetative propagation programme. However, achieving and sustaining an optimum nutritional balance in macrohedges is difficult in practice and, in order to accurately predetermine the optimum plant nutrition required all year round and to ensure optimal levels of rooting, a more controllable nutrient environment is essential. Hydroponics may facilitate this control of nutrition. At the same time it may be possible to manipulate the system to determine accurately what levels of each nutrient may contribute to the highest rooting and more importantly allow forest nursery managers to maintain those levels in a practical manner. The main aims of the present work were to obtain and compare cuttings and rooting yields from hydro-ramets in different hydroponic substrates and systems and to investigate the possible roles of essential nutrients on those parameters. Modified Nutrient Film Technique (NFT), ebb-and-flow and aeroponic tables were used in this study. The former consisted of eight individual gutters, allowing for eight different substrates to be tested simultaneously. One gutter was set up as an unmodified NFT table and the other seven gutters had gravel, Leca, peat, perlite, perlite: vermiculite mix, Rockwool® and sand as substrates; all were supplied with the same nutrient solution. Three commercial clones were used throughout these trials: GN107, GN156 and NHOO. Rooting results and data from plant elemental analyses indicated that certain elements (Ca, Cu, Zn, Mn and B) appeared to play a more important role in rooting than others (N, P, K, Mg, Na and Fe). It was also found that when comparing the hydroponic systems, the substrate and / or method of irrigation affected the availability and uptake of different nutrients, which in turn affected the rooting of coppice collected from those ramets. The rooting performance of coppice from the eight different substrates tested in the NFT system was compared. Within each of the four harvests undertaken, both clone and substrate had a significant effect on the rooting performance. However, when the four harvests were compared, only harvest number/time had a significant effect on the rooting performance of the cuttings derived from the hydro-hedges . For both the ebb-and-flow and aeroponics systems (where there was no substrate), only the clone had a significant effect on the rooting performance. In addition to this, the plants from the ebb-and-flow system produced the highest number of cuttings to be placed overall (7.9 cuttings per mother plant per harvest) while those from the gravel substrate had the highest rooting percentage overall (26.9 %). When combining these two factors into a success rate, the perlite substrate rated highest (1.7 rooted cuttings per mother plant per harvest). From a cost efficiency perspective, perlite was the most cost effective substrate, as it required the least initial capital outlay to produce one million rooted clones per year from a hydroponics system (R6 533 655). The plants in the perlite substrate also produced the highest number (6 700) of rooted cuttings per year from 1 000 mother plants with a low cost per plant (R2.33 per rooted plant). / Thesis (M.Sc.)-University of KwaZulu- Natal, Durban, 2004.
188

Three-dimensional visualization in situ and complexity analysis of crop root systems using CT scan data : a primer

Lontoc-Roy, Melinda January 2005 (has links)
The importance of root systems for soil-based resource acquisition by plants has long motivated researchers to quantify the complexity of root system structures. However, most of those studies proceeded from 2-D spatial data, and thus lacked the relevance of a 3-D analysis. In this project, helical CT scanning was applied to study root systems with an unprecedented level of accuracy, using non-destructive and non-invasive 3-D imaging that allowed for a spatio-temporal analysis. The appropriate CT scan parameters and configuration were determined for root systems of maize seedlings grown in sand and loamy sand. It was found that the soil conditions allowing for better visualization were sand before watering and loamy sand after watering. Root systems were CT scanned and visualized either at a single moment in time or repeatedly on successive days. Complexity analysis was performed by estimating the fractal dimension on skeletonized 3-D images of root systems.
189

Root growth and phosphorus uptake in relation to soil structure and strength / by Rabindra Kumar Misra

Misra, Rabindra Kumar January 1986 (has links)
Bibliography: leaves 207-222 / xvi, 222 leaves : ill ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of Soil Science, 1987
190

Effects of partial rootzone drying on grapevine physiology and fruit quality.

Stoll, Manfred January 2000 (has links)
Growth, productivity and fruit quality of grapevines are closely linked to soil water availability. Withholding of water for any length of time results in slowed growth. If drought continues yield may be lost. Vines can be manipulated to stimulate early defence mechanisms by decreasing soil water availability. By using an irrigation technique, which allows for separate zones with different soil moisture status, it is possible to stimulate response mechanisms of the root system which are normally related to water stress. The difficulty of separating 'wet' and 'dry' zones was initially overcome by using split-root plants with root systems divided between two containers. Such experiments on split-root model plants resulted in the development of an irrigation technique termed partial rootzone drying (PRD). Results from irrigation experiments using PRD have shown that changes in stomatal conductance and shoot growth are some of the major components affected (Dry et al., 1996). The idea of using irrigation as a tool to manipulate stress responses in this way had its origin in the concept that root- derived abscisic acid (ABA) was important in determining stomatal conductance (Loveys, 1984). Later experiments on split-root plants have demonstrated that many effects of water stress can be explained in terms of transport of chemical signals from roots to shoots without changes in plant water status (Gowing et al., 1990). The necessary chemical signals are provided by the dry roots, and the wet roots prevent the development of deleterious water deficits. The general hypothesis tested during this study was that partial drying of the root system gives rise to a change in the supply of root-derived chemical signals which determine changes in grapevine physiology, thereby affecting fruit quality. Experiments were conducted on split-root vines (Vitis vinifera L. cvs. Cabernet Sauvignon and Chardonnay) grown in pots of different sizes, on field-grown vines which had either their root system divided by a plastic membrane (Vitis vinifera L. cv. Cabernet Sauvignon on own roots or grafted on Ramsey rootstocks) or conventional vines with a non-divided root system (Vitis vinifera L. cv. Cabernet Sauvignon, Shiraz and Riesling) with a commercial PRD irrigation design. The irrigation treatments were vines receiving water on both sides (control) and PRD-treated vines, which only received water on one side at any time. The frequency of alternation of 'wet' and 'dry' sides was determined according to soil moisture and other influences such as rainfall and temperature. In most of the experiments the irrigation was alternated from one side to the other every 10 to 15 days. Chemical signals from roots: the role of ABA and cytokinins Studies on chemical signals have concentrated on ABA and cytokinins (CK). An improved stable isotope dilution protocol, which enables analysis of ABA and CK from the same tissue sample, was developed. Analysis of cytokinins focused on zeatin (Z), zeatin riboside (ZR), zeatin glucoside (ZG) and iso pentenyl adenine (iP). Roots are relatively inaccessible, particularly in field situations. To enable easier access to roots of field-grown vines, split-root vines were planted in a trench which was refilled with a sandy soil. This created a homogenous soil substrate and did not restrict root growth while still allowing access to roots under field conditions. Analyses of root samples of field-grown vines have shown that cytokinins and ABA may originate in roots and their concentrations can be substantially altered during an irrigation cycle. Alternating soil water conditions showed that [ABA] in roots on the 'dry' side was significantly higher compared with the 'wet' side. Due to a reduction in CK on the 'dry' side of PRD-treated vines, the ratio between ABA and CK was substantially changed during an irrigation cycle. The ABA levels in root tissue and in petiole xylem sap were negatively related to stomatal conductance. This further suggests that ABA, mostly synthesized on the 'dry' side of the root system, might be responsible for a decline in stomatal conductance. Furthermore, a higher pH of petiole xylem sap was observed in PRD-treated vines which may also contribute to the regulation of stomatal conductance. Studies on stomatal patchiness showed that non-uniform stomatal aperture occurred in field-grown vines under natural environmental conditions and was more abundant under PRD conditions. The degree of stomatal opening, determined by using a water infiltration technique, correlated with measurement of stomatal conductance. Exogenous application of a synthetic cytokinin (benzyl adenine) can override the possible ABA-mediated stomatal closure resulting from PRD treatment, providing further evidence for the in vivo role of these growth regulators in the control of stomatal conductance. The effect of benzyl adenine was transient, however, requiring repeated applications to sustain the reversal. In addition, CKs may also be important in influencing grapevine growth. Following several weeks of repeated spray applications with benzyl adenine, it was found that the development of lateral shoots in PRD-treated vines was enhanced compared to PRD-treated vines sprayed with water only. This supports the idea that the reduction in lateral shoot development seen in PRD-treated vines is due to a reduced production of CKs (Dry et al., 2000a). By measuring shoot growth rate it was found that one common feature of PRD-treated vines, which were not sprayed with CK, was a reduction of lateral shoot growth. It can therefore be speculated that the reduction in lateral growth is related to a reduced delivery of cytokinins from the roots. Zeatin and zeatin riboside concentration in shoot tips and prompt buds/young lateral shoots were reduced by the PRD treatment providing further evidence in support of this hypothesis. Water movement from 'wet' to 'dry' roots Roots, being a primary sensor of soil drying, play an important role in long- and short-term responses to PRD. Using stable isotopes of water and heat-pulse sap flow sensors water movement was traced from wet to dry roots in response to PRD. The redistribution of water from roots grown in a soil of high water potential to roots growing in a soil of low water potential may be of significance with regard to the movement of chemical signals and the control of water balance of roots. Measurements of the relative water content (RWC) have shown a slower decline of RWC of the 'dry' roots of PRD vines relative to roots of vines which received no water, despite similar water content in soil surrounding those roots. The redistribution of water may help to sustain the response to PRD for longer periods possibly releasing chemical signals and to support the activity of fine roots in drying soil. Field vines, irrigated with PRD over several growing seasons, altered their root distribution relative to the control vines. PRD caused a greater concentration of fine roots to grow in deeper soil layers and this may contribute to a better water stress avoidance. The effect on root growth may be augmented by the water movement and by the large difference in ABA to cytokinin ratio, which are also known to alter root growth. PRD makes more efficient use of available water In experiments where both control and PRD-treated vines received the same amount of water many differences between the vines were demonstrated. Under conditions where water supply was adequate for both treatments, the stomatal conductance and growth of the PRD-treated vines was restricted as has been observed in many previous experiments. As total water input was reduced, however, the stomatal conductance of PRD-treated vines became greater than control vines, suggesting that the latter were experiencing a degree of water stress, whereas the PRD-treated vines were not. This may have been due to the greater depth of water penetration in the case of the PRD-treated vines, where water was applied to a smaller soil surface area. This distinction between PRD-treated and control vines, at very low water application rates, was also reflected in pruning weights and crop yields which were actually greater in PRD-treated vines. It was concluded that at low water application rates, the PRD-treated vines were more tolerant of water stress and made more efficient use of available water. Reduction in vigor opens the canopy. The initial aim of the research which led to the development of PRD was to achieve better control of undesirable, excessive shoot and foliage growth which, from a viticultural point of view, has many disadvantages. Grapevine shoot growth rate responds very sensitively to drying soil conditions. The irrigation strategy used in the PRD experiments maintained a reduction of both main shoot and lateral shoot growth. In response to PRD a decrease in shoot growth rate and leaf area was observed. Much of the reduction in canopy biomass was due to a reduced leaf area associated with lateral shoots, thus influencing the canopy structure. This was one major factor improving the light penetration inside the canopy. Control of vegetative vigour results in a better exposure of the bunch zone to light and, as a consequence, in improved grape quality. It is likely that changes in canopy density, as a result of PRD, is causing changes in fruit quality components. Anthocyanin pigments such as derivatives of delphinidin, cyanidin, petunidin and peonidin were more abundant in berries from PRD vines; by comparison the concentration of the major anthocyanin, malvidin, was reduced. When leaves were deliberately removed from more vigorous control vines, which improved bunch exposure, the differences in fruit composition were much reduced. This further supports the idea that a more open canopy, in response to PRD, improves fruit quality by affecting the canopy structure. Fruit quality consequently determines the quality, style and value of the finished wine. Wines from this study have been produced and data on wine quality from commercial wineries are also available. Sensory evaluations have demonstrated that high wine quality from PRD-treated vineyards can be achieved without any yield-depressing effects. This study has provided evidence to support the original hypothesis. The major findings were: a) Chemical signals, altered under PRD and mostly originating from roots, play an important role in the root to shoot communication in grapevines. b) The movement of water from 'wet' to 'dry' soil layers may help to sustain chemical signals as a response of grapevines to PRD and to support the activity of fine roots in drying soil. c) A reduction in vegetative growth, in particular of lateral shoots, was sustained using PRD and affected the canopy structure which in turn, due to a better light penetration into the canopy, improved the fruit quality. d) The reduction in irrigation water applied did not have a detrimental effect on grape yield and thus the efficiency of water use was improved. e) Application of relatively low irrigation rates showed that PRD-treated vines were more tolerant of water stress and made more efficient use of available water. / Thesis (Ph.D.)--Department of Horticulture, Viticulture and Oenology, 2000.

Page generated in 0.0382 seconds