• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 257
  • 61
  • 45
  • 40
  • 31
  • 16
  • 8
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 599
  • 120
  • 86
  • 51
  • 51
  • 50
  • 43
  • 42
  • 41
  • 38
  • 36
  • 36
  • 35
  • 34
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Numerical simulation of vortex breakdown in an enclosed circular cylinder

Watson, John Paul 08 1900 (has links)
No description available.
72

Fatigue of a spring steel with varying levels of non-metallic inclusions

Holman, Alan Edwin Lee January 2001 (has links)
Plain specimens of two batches of the commercial spring steel BS 251A58 of nominally identical processing but significantly differing levels of non-metallic inclusion levels, have been tested in rotating bending. The data produced has been analysed against some recent methods for the prediction of fatigue properties in high strength materials containing defects. The materials tested were specifically selected for their disparate cleanliness levels, yielding specimens with differing inclusion distribution and maxima. The morphology of critical inclusions is identical between the two material batches. Material microstructure is tempered martensite with ultimate tensile strength of approximately 2000 MPa, which renders it well above the strength level where sensitivity to defects causes variability in fatigue behaviour. Models have been selected from the literature for the prediction of fatigue limit using characterisation of the local microstructural state and the size and critical position of non-metallic inclusions. These models have been validated by the analysis of specific failures after fractographic analysis. It has been shown that these models are acceptably accurate and generally conservative. Difficulties in experimental work have precluded the planned measurement of crack growth rates during the current test work. These difficulties have yielded a superimposed mean stress to the rotating bend test. This mean stress has been quantified for each test and the result coupled with a parameter for mean stress correction. The validity of the mean stress correction has been proven in this work to be valid. More consistent results are observed for the mean stress corrected data. A statistical method for the prediction of maximum non-metallic inclusion size for a given number of specimens or components from small sample microsection analyses has yielded good results when compared to the fractographic observations. This work has investigated the effect of varying magnification level and number of fields surveyed on the accuracy of prediction and recommendations are made for the method for obtaining best accuracy. A 'unified' crack propagation life model from the literature has been applied which combines long and short crack growth regimes. The model has shown good correlation to the current data but only after fitting of constants and only within the low cycle regime. Relationships presented in the literature between constants and the material ultimate tensile strength were found to be inapplicable to the current material at this strength level.
73

Development and application of multigrid methods in CFD for turbine rim sealing

Hills, N. J. January 1996 (has links)
No description available.
74

An investigation into heavy vehicle drum brake squeal

Lang, Allan M. January 1994 (has links)
Many mechanisms have been suggested for brake squeal over many years. In order to identify the most appropriate of these mechanisms, an experimental investigation has been carried out to define in detail the vibration characteristics of a squealing heavy vehicle air operated drum brake on both a vehicle and a laboratory brake test rig. This required the development of a novel 'scanning' technique for the modal analysis of the rotating drum, which showed the presence of well-defined complex wavelike modes. From these results, the dynamic behaviour of the drum, in particular, is found to be in good qualitative agreement with the predictions of a simple 'binary flutter' mechanism of squeal. Based on the role of rotor symmetry in this mechanism, a means of decoupling, flutter modes is developed involving a reduction in the rotational symmetry of the drum by means of attaching masses in a defined pattern at its periphery. It is shown theoretically that such decoupling would be expected to increase the dynamic stability of the brake, and experimental application of the technique confirms its effectiveness in reducing or eliminating squeal. Practical design aspects of reducing the rotational symmetry of the drum are considered, using finite element modelling, and it is also shown that the technique can be effective in other types of vehicle brake, such as disc brakes and hydraulic drum brakes. The simple lumped parameter models used in the above work are inadequate as brake design tools, however, and so a novel application of finite element modelling is used to extend the principle of the binary flutter mechanism to a more detailed model of a complete brake. This is shown to be capable of predicting known features of squeal and may be used as a brake design tool for both the brake structure and the friction material.
75

Process intensification : spinning disc reactor for the polymerisation of styrene

Boodhoo, Kamelia January 1999 (has links)
This investigation is concerned with the assessment of the performance of a novel spinning disc reactor (SDR) for the polymerisation of chemically initiated freeradical polymerisation of styrene. The application of high acceleration fields such as those created on the surface of the grooved rotating disc to the polymerising system is aimed at intensifying the polymerisation rate and producing a better quality polymer product. As part of the experimental programme, four separate sets of experimental runs were conducted on a 360 mm diameter grooved rotating disc at a fixed temperature of 88-90°C to explore the effects of disc rotational speed and prepolymer feed conversion/viscosity on the extent of monomer conversion and molecular weight properties (M., MW and MWD) of the product from the SDR. The performance data of the SDR was compared with conventional batch polymerisation data. Both the disc rotational speed and prepolymer feed conversion/viscosity variables were found to have a profound influence on the performance of the SDR. A steady increase in conversion, rate of polymerisation and hence time saving in one pass in the SDR were observed with a rise in the prepolymer feed conversion and rotational speed until, for the latter, an optimal speed of rotation which gave the highest rate of polymerisation was reached. The results have been explained in relation to the effect of disc speed and prepolymer feed viscosity on mean film thickness, mean residence time and film surface instabilities. Furthermore, the SDR product is seen to have generally improved characteristics in terms of narrower molecular weight distribution when compared to polymer prepared in the batch at the same conversion. The large enhancement of the rate of styrene polymerisation in the SDR was discussed in terms of a possible improvement in the BPO initiator efficiency f and non-stationary state polymerisation conditions likely to be prevalent on the rotating disc. The general improvement in SDR product quality was ascribed to the combined effects of a reduced diffusion path length and an intense mixing mechanism within the thin film. A separate experimental study exploring the effects of micromixing efficiency on the conversion and molecular weight properties of styrene polymerisation in the batch was also undertaken. The opposing effects of enhanced micromixing in batch and continuous polymerisation systems were contrasted in a theoretical manner. A theoretical case study highlighting the energy efficiency of the SDR was also carried out. Savings in energy of more than 70% was calculated for a semi-batch process using an industrially adapted spinning disc reactor in comparison to a purely batch process. Finally, a two-stage continuous industrial process for free-radical polymerisation has been proposed consisting of an enhanced tubular reactor in the first stage followed by a parallel arrangement of several rotating disc surfaces. Improvements in intrinsic safety and minimised risks of polymer degradation and thermal runaways are the expected potential benefits. Keywords: Process Intensification, Thin Film, Spinning Disc Reactor, Free Radical Polymerisation, Polystyrene
76

鉛直支持された磁気軸受・剛性ロータ系の非線形振動解析と実験 (制御力の遅れを考慮した場合)

井上, 剛志, INOUE, Tsuyoshi, 石田, 幸男, ISHIDA, Yukio, 村上, 新, MURAKAMI, Shin 07 1900 (has links)
No description available.
77

Kinematics and motion planning of a rolling disk between two planar manipulators

Pandravada, Ratnam. January 1996 (has links)
Thesis (M.S.)--Ohio University, November, 1996. / Title from PDF t.p.
78

Estudo experimental do escoamento em torno de cilindros circulares em movimento de rotação

Carvalho, Gustavo Bifaroni de [UNESP] 29 August 2003 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:23:39Z (GMT). No. of bitstreams: 0 Previous issue date: 2003-08-29Bitstream added on 2014-06-13T19:09:40Z : No. of bitstreams: 1 carvalho_gb_me_ilha.pdf: 3399591 bytes, checksum: 93cf9ce80b863df9a4e44fe804f03aa6 (MD5) / O presente trabalho traz uma investigação experimental do escoamento em torno de um cilindro rotativo posicionado perpendicularmente à direção principal do escoamento, para números de Reynolds inferiores a 103. Os experimentos foram conduzidos em um túnel hidrodinâmico vertical, com seção de teste 146x146x500 mm e intensidade turbulenta da corrente livre inferior a 0,5%. O diâmetro do corpo de prova foi fixado em 6 mm, proporcionando um bloqueio sólido no interior da seção de testes pouco superior a 4%. A influência do número de Reynolds e da rotação específica do corpo de prova sobre a configuração do escoamento foi bastante estudada. A freqüência de emissão dos vórtices, necessária ao cálculo do número de Strouhal, foi determinada a partir da obtenção do sinal de velocidades, adquirido com o auxílio de um anemômetro de filme quente, ou através da técnica de contagem de fotogramas. Técnicas de visualização de escoamento foram, também, empregadas, em diferentes circunstâncias, tanto na análise qualitativa do escoamento, como para auxiliar o correto posicionamento das sondas de filme quente. Em vários ensaios, a visualização do escoamento por injeção de corante líquido a montante do corpo de prova foi utilizada, mostrando-se bastante eficiente, sobretudo no que concerne à qualidade das imagens obtidas. No entanto, esta técnica só possibilita a visualização de uma região bastante restrita do escoamento e, dependendo do posicionamento da agulha de injeção, diferentes configurações do escoamento podem ser observadas, dificultando a interpretação dos resultados. Para contornar esta situação, utilizou-se, também, a técnica de geração de bolhas de hidrogênio, que permite uma visão mais abrangente do campo de escoamento. De maneira geral, os resultados foram bastante satisfatórios quando comparados com a literatura, mostrando que a... . / This work presents an experimental investigation on the flow around a rotating cylinder positioned perpendicularly to the free stream, for Reynolds numbers up to 103. The experiments have been carried out inside a 146x146x500 mm test section of a vertical water tunnel, using a 6mm diameter cylinder, which has provided a lower than 4% blockage ratio inside the test section, under a less than 0.5% maximum free-stream turbulence intensity. The influence of both diameter-based Reynolds number and specific rotation of the cylinder on the flow configuration has been analyzed. The vortex shedding frequency, parameter necessary to evaluate the Strouhal number, has been determined from the velocity signal from hot film anemometer as well as directly through a framecounting technique. Two different methods of flow visualization, liquid dye and hydrogen bubble generation, has been also used under distinct circumstances, in order to provide a qualitative analysis of the flow, as well to obtain the correct location of the hot-film probes. In some experiments, flow patterns have been visualized by liquid dye injection upstream the test cylinder, propitiating a good image quality. Dye injection, however, allows for the visualization of a quite restricted area of the flow, in such a way that, depending on the needle location, several distinct flow configurations appear, making it very difficult the interpretation of the results. In order to mitigate those drawbacks, the technique of hydrogen bubble generation has also been employed, reaching for a far wider vision of the flow field. The achieved results have showed that the wake structure is strongly affected by the cylinder rotation, in such a way that the vortices generation can be totally inhibited for a values upper than 2, in the all range of the Reynolds number.
79

Internal gravity waves in a vertically sheared flow

Healey, David Andrew January 1968 (has links)
We investigate the propagation of internal gravity waves in a rotating fluid with horizontal and vertical stratification. The modification of these waves by the presence of a vertically sheared geostrophic current is determined, and the rate of energy exchange between waves and current is estimated and compared to exchange rates of other interaction mechanisms. The effect of boundary conditions on the range of frequencies allowed for wave propagation is also considered. The wave amplitude has horizontal exponential dependence due to the horizontal density variation as well as to exchange of energy with the mean shear flow. The solution also shows a phase difference from surface to bottom. For waves propagating normally to a vertically sheared geostrophic current, the energy exchange mechanism is found to be weak when compared to other exchange mechanisms and is likely to be of little importance in the ocean. The imposition of boundary conditions on the wave solution alters the frequency range over which solutions may exist. / Science, Faculty of / Physics and Astronomy, Department of / Graduate
80

A Finite Element Study of Stresses in Stepped Splined Shafts, and Partially Splined Shafts Under Bending, Torsion, and Combined Loadings

Baker, Donald Alexander 27 December 2000 (has links)
The maximum von Mises stress is calculated for solid finite element models of splined shafts with straight-sided teeth. One spline shaft is stepped with larger diameter section containing spline teeth and the smaller diameter section circular and cylindrical with no spline teeth. A second shaft is not stepped, but contains incomplete spline teeth. Finite element analyses are performed for the cases of a stepped shaft of three different step size ratios (d/D). The second set of models consists of a solid cylindrical shaft with incomplete spline teeth. The incomplete regions of the spline teeth are modeled in three radii (R). Bending, torsion, and combined loads are applied to each model, including several combinations of bending and torsion between pure bending and pure torsion. Finite element stress results are converged to within 2% for verification. The stresses in the stepped splined shafts are up to 50% greater than nominal stresses in the non-splined section and up to 88% greater than nominal stresses splined section. Stresses in the partially splined shaft showed little or no correlation between the hob radius and the magnitude of the peak von Mises stress, but show a strong correlation between the peak stress and the proportion of bending to torsion. The peak von Mises stress occurs when the applied load consists of greater proportions of torsion as opposed to bending. Stresses in the partially splined shaft are up to 42% greater than the well-developed nominal stress in the non-splined section of the shaft, and up to 7% greater than the nominal stresses in the splined section. / Master of Science

Page generated in 0.0866 seconds